range 1.42 < q < 27.10, of which 11 085 were unique. GOF = 0.940, R1 =
0.0538 [for 7010 reflections with I > 2s(I)] and wR2 = 0.1255 (for all
data). Crystal data for 4·C6H14: C24H68N9Si6U, M = 889.44, monoclinic,
˚
˚
˚
˚
space group C2/c, a = 18.767(1) A, b = 14.6497(8) A, c = 16.8791(9) A,
◦
3
˚
b = 111.295(2) , V = 4323.7(4) A , Z = 4, T = 150(2) K, l = 0.71073 A,
Rint = 0.0540; a total of 17 620 reflections collected in the range 1.81 < q <
26.73, of which 4513 were unique. GOF = 1.011, R1 = 0.0243 [for 4016
reflections with I > 2s(I)] and wR2 = 0.0581 (for all data).
1 G. Proulx and R. G. Bergman, J. Am. Chem. Soc., 1995, 117, 6382–6833.
2 H. Wu and M. B. Hall, J. Am. Chem. Soc., 2008, 130, 16452–16453.
3 S. Cenini and G. La Monica, Inorg. Chim. Acta, 1976, 18, 279–293.
4 S. Cenini, E. Gallo, A. Caselli, F. Ragaini, S. Fantauzzi and C.
Piangiolino, Coord. Chem. Rev., 2006, 250, 1234–1253.
5 J. Stra¨hle, Comments Inorg. Chem., 1985, 4, 295–321.
6 K. Dehnicke and J. Stra¨hle, Angew. Chem., Int. Ed. Engl., 1992, 31,
955–978.
7 R. G. Denning, J. Phys. Chem. A, 2007, 111, 4125–4143.
8 M. P. Jensen and A. H. Bond, J. Am. Chem. Soc., 2002, 124, 9870–9877.
9 G. R. Choppin, J. Alloys Compd., 2002, 344, 55–59.
10 A. J. Gaunt, S. D. Reilley, A. E. Enriquez, B. L. Scott, J. A. Ibers, P.
Sekar, K. I. M. Ingram, N. Kaltsoyannis and M. P. Neu, Inorg. Chem.,
2008, 47, 29–41.
11 T. Arliguie, L. Belkhiri, S.-E. Bouaoud, P. Thue´ry, C. Villiers, A.
Boucekkine and M. Ephritikhine, Inorg. Chem., 2009, 48, 221–230.
12 G. W. C. Silva, C. B. Yeamans, L. Ma, G. S. Cerefice, K. R. Czerwinski
and A. P. Sattelberger, Chem. Mater., 2008, 20, 3076–3084.
13 L. Black, F. Miserque, T. Gouder, L. Havela, J. Rebizant and F. Wastin,
J. Alloys Compd., 2001, 315, 36–41.
Fig. 4 ORTEP diagram of U[N(SiMe3)2]3(N3)2·C6H14 (4·C6H14) with 50%
◦
˚
probability ellipsoids. Selected bond lengths (A) and angles ( ): U1–N1 =
2.226(3), U1–N4 = 2.166(2), U1–N5 = 2.168(3), N1–N2 = 1.190(4),
N2–N3 = 1.136(5), U1–N1–N2 = 175.5(2), N1–N2–N3 = 179.5(4),
N4–U1–N5 = 116.61(6), N1–U1–N4 = 90.55(9), N1–U1–N5 = 89.70(7).
˚
˚
longer equivalent (N1–N2 = 1.190(4) A, N2–N3 = 1.136(5) A),
14 M. Streit and F. Ingold, J. Eur. Ceram. Soc., 2005, 25, 2687–2692.
15 W. J. Evans, S. A. Kozimor and J. W. Ziller, Science, 2005, 305, 1835–
1838.
indicative of slight activation of the azide moiety.
In addition to exploring their oxidation, we have also probed
the reduction chemistry of our azide complexes. U3+ is a powerful
reducing agent36 and is capable of reducing azides.17 However,
addition of UIII[N(SiMe3)2]337 to 4 does not induce N2 elimination,
instead its results in conproportionation, affording the previously
prepared U(IV)
16 W. J. Evans, K. A. Miller, J. W. Ziller and J. Greaves, Inorg. Chem.,
2007, 46, 8008–8018.
17 G. Nocton, J. Pe´caut and M. Mazzanti, Angew. Chem., Int. Ed., 2008,
47, 3040–3042.
18 I. Korobkov, S. Gambarotta and G. P. A. Yap, Angew. Chem., Int. Ed.,
2002, 41, 3433–3436.
19 A. R. Fox and C. C. Cummins, J. Am. Chem. Soc., 2009, 131, 5716–
5717.
20 Tractable material can only be isolated by performing the azide and
aryloxide exchange simultaneously. If either reagent is omitted, only
complex product mixtures are generated.
21 G. Zi, L. Jia, E. L. Werkema, M. D. Walter, J. P. Gottfriedsen and R. A.
Andersen, Organometallics, 2005, 24, 4251–4264.
22 M.-J. Crawford, A. Ellern and P. Mayer, Angew. Chem., Int. Ed., 2005,
44, 7874–7878.
23 I. Castro-Rodriguez, K. Olsen, P. Gantzel and K. Meyer, J. Am. Chem.
Soc., 2003, 125, 4565–4571.
24 I. Castro-Rodriguez, H. Nakai, L. N. Zakharov, A. L. Rheingold and
K. Meyer, Science, 2004, 305, 1757–1759.
25 J.-C. Berthet, M. Lance, M. Nierlich, J. Vigner and M. Ephritikhine,
J. Organomet. Chem., 1991, 420, C9–C11.
26 R. Haiges, J. A. Boatz, M. Yousufuddin and K. O. Christe, Angew.
Chem., Int. Ed., 2007, 46, 2869–2874.
(3)
azide (N3)U[N(SiMe3)2]3 (5) (eqn (3)).38 Likewise, addition of
Na/Hg amalgam to a THF solution of 2 fails to induce N2
elimination. In fact, no reaction is observed between these two
reagents.
In summary, we have synthesized and structurally characterised
a series of U(IV) and U(V) azide complexes supported by aryloxide
and amide ligands. These complexes exhibit unique redox chem-
istry which we are continuing to investigate, with the intent of
producing nitrido complexes of uranium.
27 I. C. Tornieporth-Oetting and T. M. Klapo¨tke, Angew. Chem., Int. Ed.
Engl., 1995, 34, 511–520.
Notes and references
28 A. Kornath, Angew. Chem., Int. Ed., 2001, 40, 3135–3136.
29 D. Stalke and R. Fleischer, Chem. Commun., 1998, 343–344.
30 M. D. Brown, J. M. Dyke, F. Ferrante, W. Levason, J. S. Ogden and M.
Webster, Chem.–Eur. J., 2006, 12, 2620–2629.
‡ Crystal data for 1: C56H84Li2N6O10U, M = 1253.20, monoclinic, space
˚
3
˚
˚
group P21/n, a = 11.4965(8) A, b = 22.525(2) A, c = 12.6040(9) A, b =
◦
˚
˚
114.922(2) , V = 2959.9(4) A , Z = 2, T = 150(2) K, l = 0.71073 A,
Rint = 0.1679; a total of 23 433 reflections collected in the range 2.15 < q <
27.10, of which 6184 were unique. GOF = 0.904, R1 = 0.0438 [for 3802
reflections with I > 2s(I)] and wR2 = 0.1214 (for all data). Crystal data
for 2: C34H86N9NaO4Si6U, M = 1114.68, monoclinic, space group C2/◦c,
31 D. J. Mindiola and G. L. Hillhouse, J. Am. Chem. Soc., 2002, 124,
9976–9977.
32 H. W. Turner, R. A. Andersen, A. Zalkin and D. H. Templeton, Inorg.
Chem., 1979, 18, 1221–1224.
˚
˚
˚
˚
a = 19.425(1) A, b = 11.8336(8) A, c = 25.319(2) A, b = 104.369(2) ,
33 C. Na¨ther, J. Greve and I. Jeb, Acta Crystallogr., Sect. E: Cryst. Struct.
3
˚
V = 5637.8(7) A , Z = 4, T = 150(2) K, l = 0.71073 A, Rint = 0.1600; a
total of 23 319 reflections collected in the range 2.03 < q < 26.37, of which
5716 were unique. GOF = 1.011, R1 = 0.0483 [for 4793 reflections with I >
2s(I)] and wR2 = 0.1209 (for all data). Crystal data for 3: C52H69LiN3O8U,
Rep. Online, 2005, 61, m317–m319.
34 M. A. S. Goher and F. A. Mautner, Polyhedron, 1994, 13, 2149–2155.
35 M. J. Ingelson, M. Pink, H. Fan and K. G. Caulton, J. Am. Chem. Soc.,
2008, 130, 4262–4276.
˚
M = 1109.07, orthorhombic, space group P212121, a = 12.525(1) A, b =
36 W. J. Evans and S. A. Kozimor, Coord. Chem. Rev., 2006, 250, 911–935.
37 R. A. Andersen, Inorg. Chem., 1979, 18, 1507–1509.
38 J. L. Stewart, Ph.D. Thesis, University of California, Berkeley, 1988.
3
˚
˚
˚
20.098(2) A, c = 20.536(2) A, V = 5170(1) A , Z = 4, T = 150(2) K,
˚
l = 0.71073 A, Rint = 0.1611; a total of 42 047 reflections collected in the
354 | Dalton Trans., 2010, 39, 352–354
This journal is
The Royal Society of Chemistry 2010
©