8
LEI ET AL.
10. Mastovska K, Dorweiler KJ, Lehotay SJ, Wegscheid JS, Szpylka
KA. Pesticide multiresidue analysis in cereal grains using modi-
fied QuEChERS method combined with automated direct
sample introduction GC‐TOFMS and UPLC‐MS/MS techniques.
J Agric Food Chem. 2010;58(10):5959‐5972.
provides a novel method to extract pesticides in fruits and
vegetables. What is more, this study combined this with
chiral liquid chromatography, providing a method basis
for further research on chiral pesticides in foods.
11. Bidari A, Ganjali MR, Norouzi P, Hosseini MR, Assadi Y.
Sample preparation method for the analysis of some organo-
phosphorus pesticides residues in tomato by ultrasound‐
assisted solvent extraction followed by dispersive liquid‐liquid
microextraction. Food Chem. 2011;126(4):1840‐1844.
ACKNOWLEDGMENTS
This work was supported by the National Natural Science
Foundation of China (No. 81503029) and Shenyang
Pharmaceutical University (ZQN2016011).
12. Rodríguez‐Sanmartín P, Moreda‐Piñeiro A, Bermejo‐Barrera A,
Bermejo‐Barrera P. Ultrasound‐assisted solvent extraction of total
polycyclic aromatic hydrocarbons from mussels followed by
spectrofluorimetric determination. Talanta. 2005;66(3):683‐690.
ORCID
13. Lamas JP, Sanchezprado L, Garciajares C, Llompart M.
Determination of fragrance allergens in indoor air by active
sampling followed by ultrasound‐assisted solvent extraction
and gas chromatography‐mass spectrometry. J Chromatogr A.
2010;1217(12):1882‐1890.
REFERENCES
1. He Z, Peng Y, Wang L, Luo M, Liu X. Unequivocal enantiomeric
identification and analysis of 10 chiral pesticides in fruit and
vegetables by QuEChERS method combined with liquid
chromatography‐quadruple/linear ion trap mass spectrometry
determination. Chirality. 2015;27(12):958‐964.
14. Yalin C, Hua T, Dazhou C, Lei L. A novel method based on
MSPD for simultaneous determination of 16 pesticide residues
in tea by LC‐MS/MS. J Chromatogr B. 2015;999:72‐79.
15. Hu J. Research advances in new technologies for pre‐treatment
of pesticide residues in fruits and vegetables. Ministry Agric.
2014;30‐31.
2. Zhao M, Liu W. Enantioselective cytotoxicity and molecular
mechanisms of modern chiral pesticides. Am Chem Soc.
2011;10:153‐165.
16. Heidari H, Razmi H. Multi‐response optimization of magnetic
solid phase extraction based on carbon coated Fe3O4 nanoparti-
cles using desirability function approach for the determination
of the organophosphorus pesticides in aquatic samples by
HPLC‐UV. Talanta. 2012;99:13‐21.
3. Bonansea RI, Amé MV, Wunderlin DA. Determination of
priority pesticides in water samples combining SPE and SPME
coupled to GC‐MS.
A case study: Suquía River basin
(Argentina). Chemosphere. 2013;90(6):1860‐1869.
4. Tuzimski T. Application of SPE‐HPLC‐DAD and SPE‐TLC‐DAD
to the determination of pesticides in real water samples. J Sep
Sci. 2008;31(20):3537‐3542.
17. Han Z, Jiang K, Fan Z, et al. Multi‐walled carbon nanotubes‐
based magnetic solid‐phase extraction for the determination of
zearalenone and its derivatives in maize by ultra‐high perfor-
mance liquid chromatography‐tandem mass spectrometry.
Food Control. 2017;79:177‐184.
5. Ravelo‐Pérez LM, Hernández‐Borges J, Cifuentes A, Rodríguez‐
Delgado MÁ. MEKC combined with SPE and sample stacking
for multiple analysis of pesticides in water samples at the ng/L
level. Electrophoresis. 2007;28(11):1805‐1814.
18. Li S, Gong J, Zhou Y, et al. Application of multi‐walled carbon
nanotubes in solid‐phase extraction technique. Sci Technol Food
Ind. 2013;34:373‐377.
6. Lagunas‐Allué L, Sanz‐Asensio J, Martínez‐Soria MT. Response
surface optimization for determination of pesticide residues in
grapes using MSPD and GC‐MS: assessment of global uncer-
tainty. Anal Bioanal Chem. 2010;398(3):1509‐1523.
19. Zhao P, Wang L, Luo J, Li J, Pan C. Determination of pesticide
residues in complex matrices using multi‐walled carbon nano-
tubes as reversed‐dispersive solid‐phase extraction sorbent.
J Sep Sci. 2012;35(1):153‐158.
7. Liu Y, Shen D, Mo R, Zhong D, Tang F. Simultaneous determi-
nation of 15 multiresidue Organophosphorous pesticides in
Camellia oil by MSPD‐GC–MS. Bull Environ Contam Toxicol.
2013;90(3):274‐279.
20. Hadjmohammadi MR, Peyrovi M, Biparva P. Comparison of
C18 silica and multi‐walled carbon nanotubes as the adsorbents
for the solid‐phase extraction of chlorpyrifos and phosalone in
water samples using HPLC. J Sep Sci. 2010;33(8):1044‐1051.
8. Cao H, Zhu Y, Li Z, Lin J, Sheng H. Simultaneous determina-
tion of ten pesticide residues in ball cabbage by ultra
performance liquid chromatography‐tandem mass spectrometry
and magnetic multiwalled carbon nanotubes cleaning. Chin J
Anal Lab. 2015;34:1480‐1484.
21. Deng X, Guo Q, Chen X, Xue T, Wang H, Yao P. Rapid and
effective sample clean‐up based on magnetic multiwalled carbon
nanotubes for the determination of pesticide residues in tea by
gas chromatography‐mass spectrometry. Food Chem.
2014;145:853‐858.
9. Koesukwiwat U, Lehotay SJ, Miao S, Leepipatpiboon N. High
throughput analysis of 150 pesticides in fruits and vegetables
using QuEChERS and low‐pressure gas chromatography‐time‐
of‐flight mass spectrometry. J Chromatogr A. 2010;1217(43):
6692‐6703.
22. Gao L. Preparation of Carbon Canotube Based Magnetic Compos-
ites for Separation and Analysis of Pesticides in Food Northeast
Forestry University; 2015.