Li et al.
JOCArticle
catalyst and excess arylboronic acids are required to form the
multifunctionalized fluorophores. The Pd-catalyzed aryla-
tion reaction is a useful tool for mono- or difunctionalization
with little steric effect. As the amount of steric substituents
increases, the coupling reaction is inhibited. Therefore, more
palladium and arylboronic acid are required to increase the
coupling yield. Another question regarding the palladium-
catalyzed arylation reaction concerns the purification of the
multifunctionalized products. One or two substituents were
introduced to the periphery of the central core in a palla-
dium-catalyzed coupling reaction; products can be obtained
in high yield and purified easily.1a,4a,b,8 As the amount of
peripheral aryl substituents increases, the activity of the
arylation reaction decreases, and some byproducts with
fewer substituents appear. The target product is difficult to
isolate from these side products. This reaction is less effective
than the preceding one in forming asymmetric aryl substit-
uents on the periphery of the structure. To solve the afore-
mentioned problems, Paal-Knorr condensation was used in
the laboratory to generate a variety of asymmetric aryl-
substitued pyrroles.9 Not only do these fluorophores pro-
duce fluorescence in the solid state, but also their intrinsic
electrical, optical, and morphological properties can be
tuned by modifying the peripheral aryl groups. To increase
the fluorescence efficiency, some fluorescence-active poly-
cyclic aromatic units such as fluorene, pyrene, and hole-
transporting moieties, such as diarylamine, are introduced.
The trflate-capping pyrrole is the key intermediate to incor-
porate with these fluorescence-active polycyclic aromatic
units and hole-transporting moieties. Aryl triflates are a very
attractive alternative to aryl halides in the palladium-cata-
lyzed reaction.10 They can be easily synthesized from readily
available phenolic derivatives.11 Aryl triflate has been widely
adopted to extend the aromatic ring in a palladium-catalyzed
reaction. However, few works have been published on the
synthesis of fluorescent materials.
(1) (a) Huang, D. F.; Moorthy, J. M.; Natarajan, P.; Venkatakrishnan,
P.; Chow, T. J. Org. Lett. 2007, 25, 5215–5218. (b) Huang, W.; Tang, C.; Liu,
F.; Xia, Y. J.; Xie, L. H.; Wei, A.; Li, S. B.; Fan, Q. L. J. Mater. Chem. 2006,
16, 4074–4080. (c) Yu, G.; Jiao, S. B.; Liao, Y.; Xu, X. J.; Wang, L. P.; Wang,
L. M.; Su, Z. M.; Ye, S. H.; Liu, L. Q. Adv. Funct. Mater. 2008, 18, 2335–
2347. (d) Shen, W. J.; Dodda, R.; Wu, C. C.; Wu, F.; Liu, T. H.; Chen, H. H.;
Chen, Ch. H.; Shu, C. F. Chem. Mater. 2004, 16, 930–934. (e) Lee, J.; Liu,
Q. D.; Bai, D. R.; Kang, Y.; Tao, Y.; Wang, S. Organometallics 2004, 23,
6205–6213. (f) Chen, C. T.; Chiang, C. L.; Lin, Y. C.; Chan, L. H.; Huang,
C. H.; Tsai, Z. W.; Chen, C. T. Org. Lett. 2003, 5, 1261–1264.
(2) (a) Setayesh, S.; Grimsdale, A. C.; Weil, T.; Enkelmann, V.; Mu1llen,
K.; Meghdadi, F.; List, E. J. W.; Leising, G. J. Am. Chem. Soc. 2001, 123,
946–953. (b) Gronheid, R.; Hofkens, J.; Kohn, F.; Weil, T.; Reuther, E.;
€
Mullen, K.; De Schryver, F. C. J. Am. Chem. Soc. 2002, 124, 2418–2419.
(c) Freeman, A. W.; Koene, S. C.; Malenfant, P. R. L.; Thompson, M. E.;
Frechet, J. M. J. J. Am. Chem. Soc. 2000, 122, 12385–12386. (d) Justin
Thomas, K. R.; Thompson, A. L.; Sivakumar, A. V.; Bardeen, C. J.;
Thayumanavan, S. J. Am. Chem. Soc. 2005, 127, 373–383. (e) Kwon,
T. W.; Alam, M. M.; Jenekhe, S. A. Chem. Mater. 2004, 16, 4657–4666.
(f) Chen, C. H.; Lin, J. T.; Yeh, M. C. P. Org. Lett. 2006, 8, 2233–2236.
(g) Lupton, J. M.; Samuel, I. D. W.; Beavington, R.; Burn, P. L.; Bassler, H.
Adv. Mater. 2001, 13, 258–261. (h) Lo, S. C.; Male, N. A. H.; Markham,
J. P. J.; Magennis, S. W.; Burn, P. L.; Salata, O. V.; Samuel, I. D. W. Adv.
Mater. 2002, 14, 975–979. (i) Anthopoulos, T. D.; Frampton, M. J.; Namdas,
E. B.; Burn, P. L.; Samuel, I. D. W. Adv. Mater. 2004, 16, 557–560.
(3) (a) Gensch, T.; Hofkens, J.; Heirmann, A.; Tsuda, K.; Verheijen, W.;
Vosch, T.; Crist, T.; Basche, T.; Mullen, K.; De Schryver, F. C. Angew.
Chem., Int. Ed. 1999, 38, 3752–3756. (b) Pogantsch, A.; Wenl, E. G.; List,
E. J. W.; Leising, G.; Mullen, K. Adv. Mater. 2002, 14, 1061–1064. (c) Wu,
R. L.; Schumm, J. S.; Pearson, D. L.; Tour, J. M. J. Org. Chem. 1996, 61,
6906–6921. (d) Tour, J. M.; Wu, R.; Schumm, J. S. J. Am. Chem. Soc. 1990,
112, 5662–5663. (e) Wong, K. T.; Chien, Y. Y.; Chen, R. T.; Wang, C. F.; Lin,
Y. T.; Chiang, H. H.; Hsieh, P. Y.; Wu, C. C.; Chou, C. H.; Su, Y. O.; Lee,
G. H.; Peng, S. M. J. Am. Chem. Soc. 2002, 124, 11576–11577. (f) Xia, C. J.;
Advincula, R. C. Macromolecules 2001, 34, 5854–5859. (g) Steuber, F.;
Staudigel, J.; Stossel, M.; Simmerer, J.; Winnacker, A.; Spreitzer, H.;
Weissortel, F.; Salbeck, J. Adv. Mater. 2000, 12, 130–133. (h) Oldham,
W. J., Jr.; Lachicotte, R. J.; Bazan, G. C. J. Am. Chem. Soc. 1998, 120,
2987–2988.
In this work, a two-stage synthetic strategy is adopted to
generate a variety of asymmetric pyrrole/polycyclic aromatic
unit hybrid fluorophores. The factors that affect and the
optimal conditions for the Paal-Knorr condensation reac-
tion that yields the aryl-substituted pyrrole core are dis-
cussed herein. The pyrrole core was further transformed into
triflate end-capping pyrrole. Many palladium-catalyzed cou-
pling reactions were further examined by incorporating with
a series of polycyclic aromatic units into the triflate end-
capping pyrrole core.
Results and Discussion
(4) (a) Kanibolotsky, A. L.; Berridge, R.; Skabara, P. J.; Perepichka, I. F.;
Bradley, D. D. C.; Koeberg, M. J. Am. Chem. Soc. 2004, 126, 13695–13702.
(b) Sonntag, M.; Kreger, K.; Hanft, D.; Strohriegl, P. Chem. Mater. 2005, 17,
3031–3039. (c) Lyu, Y. Y.; Kwak, J.; Jeon, W. S.; Byun, Y.; Lee, H. S.; Kim,
D.; Lee, C.; Char, K. Adv. Funct. Mater. 2009, 19, 420–427. (d) Culligan,
S. W.; Chen, A. C. A.; Wallace, J. U.; Klubek, K. P.; Tang, C. W.; Chen, S. H.
Adv. Funct. Mater. 2006, 16, 1481–1487. (e) Geng, Y.; Katsis, D.; Culligan,
S. W.; Ou, J. J.; Chen, S. H.; Rothberg, L. J. Chem. Mater. 2002, 14, 463–470.
(5) (a) Sotgiu, G.; Zambianchi, M.; Barbarella, G.; Aruffo, F.; Cipriani,
F.; Ventola, A. J. Org. Chem. 2003, 68, 1512–1520. (b) Su, Y. Z.; Lin, J. T.;
Tao, Y. T.; Ko, C. W.; Lin, S. C.; Sun, S. S. Chem. Mater. 2002, 14, 1884–
1890. (c) Barbarella, G.; Favaretto, L.; Zanelli, A.; Gigli, G.; Mazzeo, M.;
Anni, M.; Bongini, A. Adv. Funct. Mater. 2005, 15, 664–670. (d) Radke,
K. R.; Ogawa, K.; Rasmussen, S. C. Org. Lett. 2005, 7, 5253–5256.
(6) (a) Lee, Y. T.; Chiang, C. L.; Chen, C. T. Chem. Commun. 2008, 217–
219. (b) Palayangoda, S. S.; Cai, X.; Adhikari, R. M.; Neckers, D. C. Org.
Lett. 2008, 10, 281–284. (c) Lai, M. Y.; Chen, C. H.; Huang, W. S.; Lin, J. T.;
Ke, T. H.; Chen, L. Y.; Tsai, M. H.; Wu, C. C. Angew. Chem., Int. Ed. 2008,
47, 581–585. (d) Huang, T. H.; Lin, J. T.; Chen, L. Y.; Lin, Y. T.; Wu, C. C.
Adv. Mater. 2006, 18, 602–606. (e) Shen, J. Y.; Yang, X. L.; Huang, T. H.;
Lin, J. T.; Ke, T. H.; Chen, L. Y.; Wu, C. C.; Yeh, M. C. P. Adv. Funct. Mater.
2007, 17, 983–995.
Synthesis. Chart 1 presents the chemical structure of the
pyrrole/polycyclic aromatic units’ hybrid fluorophores. In
this work, Paal-Knorr condensation was adopted to con-
struct a functionalized aryl-substituted pyrrole core as a key
intermediate 11b. The methoxy-capping pyrrole 11b was
hydrated and further formed triflate end-capping pyrrole
12b. Incorporating N-phenylnaphthalen-1-amine or the syn-
thesized aromatic boronic acids 13-17 into the triflate 12b
by the Buchwald-Hartwig amination reaction or the Suzuki-
Miyaura cross-coupling reaction yielded pyrrole/polycyclic
aromatic units hybrid fluorophores 1-6.
(9) Kuo, W. J.; Chen, Y. H.; Jeng, R. J.; Chan, L. H.; Lin, W. P.; Yang,
Z. M. Tetrahedron 2007, 63, 7086–7096.
(10) (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483. (b) Oh-e,
T.; Miyaura, N.; Suzuki, A. Synlett 1990, 221. (c) Oh-e, T.; Miyaura, N.;
Suzuki, A. J. Org. Chem. 1993, 58, 2201–2208. (d) Riggleman, S.; DeShong,
P. J. Org. Chem. 2003, 68, 8106–8109. (e) Seganish, W. M.; DeShong, P.
J. Org. Chem. 2004, 69, 1137–1143. (f) Furstner, A.; Grabowski, J.; Leh-
(7) (a) Dang, T. T.; Ahmad, R.; Dang, T. T.; Reinke, H.; Langer, P.
Tetrahedron Lett. 2008, 49, 1698–1700. (b) Sun, X.; Liu, Y.; Chen, S.; Qiu,
W.; Yu, G.; Ma, Y.; Qi, T.; Zhang, H.; Xu, X.; Zhu, D. Adv. Funct. Mater.
2006, 16, 917–925.
€
mann, C. W. J. Org. Chem. 1999, 64, 8275–8280. (g) Bringmann, G.; Gotz,
(8) (a) Tao, S.; Peng, Z.; Zhang, X.; Wang, P.; Lee, C. S.; Lee, S. T. Adv.
Funct. Mater. 2005, 15, 1716–1721. (b) Li, Y.; Ding, J.; Day, M.; Tao, Y.; Lu,
J.; D’iorio, M. Chem. Mater. 2004, 16, 2165–2173. (c) Kim, Y. H.; Shin,
D. C.; Kim, S. H.; Ko, C. H.; Yu, H. S.; Chae, Y. S.; Kwon, S. K. Adv. Mater.
2001, 13, 1690–1693. (d) Wu, Q.; Lavigne, J. A.; Tao, Y.; D’Iorio, M.; Wang,
S. Chem. Mater. 2001, 13, 71–77.
R.; Keller, P. A.; Walter, R.; Boyd, M. R.; Lang, F.; Garcia, A.; Walsh, J. J.;
Tellitu, I.; Bhaskar, K. V.; Kelly, T. R. J. Org. Chem. 1998, 63, 1090–1097.
(h) Malapel-Andrieu, B.; Merour, J.-Y. Tetrahedron 1998, 54, 11079–11094.
(11) (a) Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000, 122,
4020–4028. (b) Marion, N.; Navarro, O.; Mei, J.; Stevens, E. D.; Scott,
N. M.; Nolan, S. P. J. Am. Chem. Soc. 2006, 128, 4101–4111.
J. Org. Chem. Vol. 75, No. 12, 2010 4005