A. Miazga et al. / Antiviral Research 92 (2011) 57–63
63
Clark Jr., A.D., Jacobo-Molina, A., Clark, P., Hughes, S.H., Arnold, E., 1995.
Crystallization of human immunodeficiency virus type 1 reverse transcriptase
with and without nucleic acid substrates, inhibitors, and an antibody Fab
fragment. Methods Enzymol. 262, 171–185.
Fehr, J., Glass, T.R., Louvel, S., Hamy, F., Hirsch, H.H., von Wyl, V., Böni, J., Yerly, S.,
Bürgisser, P., Cavassini, M., Fux, C.A., Hirschel, B., Vernazza, P., Martinetti, G.,
Bernasconi, E., Günthard, H.F., Battegay, M., Bucher, H.C., Klimkait, T., 2011.
Replicative phenotyping adds value to genotypic resistance testing in heavily
pre-treated HIV-infected individuals – the Swiss HIV Cohort Study. J. Transl.
Med. 9, 14–23.
Huang, J.-T., Chen, L.-C., Wang, L., Kim, M.-H., Warshaw, J.A., Armstrong, D., Zhu, Q.-
Y., Chou, T.-C., Watanabe, K.A., Matulic-Adamic, J., Su, T.-L., Fox, J.J., Polsky, B.,
Baron, P.A., Gold, J.W.M., Hardy, W.D., Zuckerman, E., 1991. Fluorinated sugar
analogues of potential anti-HIV-1 nucleosides. J. Med. Chem 34, 1640–1646.
Kim, E.Y., Vrang, L., Oberg, B., Merigan, T.C., 2001. Anti-HIV type 1 activity of 30-
fluoro-30-deoxythymidine for several different multidrug-resistant mutants.
AIDS Res. Hum. Retroviruses 17, 401–407.
the anti-HIV activity and cytotoxicity of nucleoside reverse trans-
criptase inhibitors (NRTIs) (Becher et al., 2003; Lund et al., 2007;
Steet et al., 2000). Furthermore, although enhanced nucleotide-
dependent excision is a major mechanism of resistance to AZT by
mutants of HIV-1 and these mutations confer some degree of resis-
tance to most NRTIs (Acosta-Hoyos and Scott, 2010), steady-state
inhibition values for AZTTP demonstrated that the drug resistant
HIV-1 RT variants with TAMs, with the exception of the SQ mutant,
do not show well defined resistance to AZTTP, even in the presence
of physiological concentrations of ATP.
4. Conclusions
Langen, P., Kowollik, G., Etzold, G., Venner, H., Reinert, H., 1972. The
phosphorylation of 30-deoxy-30-fluorothymidine and its incorporation into
DNA in a cellfree system from tumor cells. Acta Biol. Med. Ger. 29, 483–494.
LePage, G.A., Lin, Y.T., Orth, R.E., Gottlieb, J.A., 1972. 50-Nucleotides as potential
formulations for administering nucleoside analogs in man. Cancer Res. 32,
2441–2444.
LePage, G.A., Naik, S.R., Katakkar, S.B., Khaliq, A., 1975. 9-b-D-arabinofuranosyl-
adenine 50-phosphate metabolism and excretion in humans. Cancer Res. 35,
3036–3040.
Louvel, S., Battegay, M., Vernazza, P., Bregenzer, T., Klimkait, T., Hamy, F.Swiss HIV
Cohort Study, 2008. Detection of drug-resistant HIV minorities in clinical
specimens and therapy failure. HIV Med. 9, 133–141.
Lund, K.C., Peterson, L.L., Wallace, K.B., 2007. Absence of a universal mechanism of
mitochondrial toxicity by nucleoside analogs. Antimicrob. Agents Chemother.
51, 2531–2539.
On the basis of the antiviral profile, inhibition of drug resistant
HIV-1 strains and low cytotoxicity, the most effective inhibitors
were S4FLTMP (12) and FLTMP (14) (anti-HIV-1 K103N activity
EC50 = 11 nM and 30 nM, respectively, no cytotoxicity up to
10
lM).
The best thiated inhibitor S4FLTMP (12) exerts potent antiviral
activity (EC50 103 nM) against the multiresistant SQ mutant, RT
of which is 200-fold more resistant to AZTTP than that of the WT
enzyme (Table 3). S4FLTMP (12) and FLTMP (14) may therefore
be regarded as a selective potential agent against HIV-1 drug-
and multidrug-resistant strains.
Matthes, E., Lehmann, C., Scholz, D., von Janta-Lipinski, M., Gaertner, K., Rosenthal,
H.A., Langen, P., 1987. Inhibition of HIV-associated reverse transcriptase by
sugar-modified derivatives of thymidine 50-triphosphate in comparison to
cellular DNA polymerases alpha and beta. Biochem. Biophys. Res. Commun.
148, 78–85.
Matthes, E., Lehmann, C., Scholz, D., Rosenthal, H.A., Langen, P., 1988.
Phosphorylation, anti-HIV activity and cytotoxicity of 30-fluorothymidine.
Biochem. Biophys. Res. Commun. 153, 825–831.
Miazga, A., Felczak, K., Bretner, M., Siwecka, M.A., Piasek, A., Kulikowski, T., 2003.
Thiated analogues of 20,30-dideoxy-30-fluorothymidine and their phosphorylated
and phosphonylated derivatives: synthesis, interaction with HIV reverse
transcriptase, and in vitro anti-HIV activity. Nucleosides Nucleotides Nucleic
Acids 22, 973–976.
Acknowledgements
We thank Dr. Vincent Vidal for critical review and discussion of
the manuscript and Mrs. Carla Garcia Llansó for excellent technical
assistance.
This work was supported by the EC Grant LSHP-CT-2007-
037760.
References
Opravil, M., Klimkait, T., Louvel, S., Wolf, E., Battegay, M., Fux, C.A., Bernasconi, E.,
Vogel, M., Speck, R., Weber, R.Swiss HIV Cohort Study, 2010. Prior therapy
influences the efficacy of lamivudine monotherapy in patients with lamivudine-
resistant HIV-1 infection. J. Acquir. Immune Defic. Syndr. 54, 51–58.
Poopeiko, N.E., Poznanski, J., Drabikowska, A., Balzarini, J., De Clercq, E.,
Mikhailopulo, I.A., Shugar, D., Kulikowski, T., 1995. Synthesis, solution
conformation and biological properties of 20,30-dideoxy-30-fluoro-D-erythro-
pentofuranosides of 2-thiouracil and 2-thiothymidine. Nucleosides Nucleotides
Nucleic Acids 14, 435–437.
Acosta-Hoyos, A.J., Scott, W.A., 2010. The role of nucleotide excision by reverse
transcriptase in HIV drug resistance. Viruses 2, 372–994.
Balzarini, J., Baba, M., Pauwels, R., Herdewijn, P., De Clercq, E., 1988. Anti-retrovirus
activity of 30-fluoro- and 30-azido-substituted pyrimidine 20,30-dideoxynucleoside
analogues. Biochem. Pharmacol. 37, 2847–2856.
Becher, F., Pruvost, A.G., Schlemmer, D.D., Créminon, C.A., Goujard, C.M., Delfraissy,
J.F., Benech, H.C., Grassi, J.J., 2003. Significant levels of intracellular stavudine
triphosphate are found in HIV-infected zidovudine-treated patients. AIDS 17,
555–561.
Cheng, Y., Prusoff, W.H., 1973. Relationship between the inhibition constant (Ki) and
the concentration of inhibitor which causes 50 per cent inhibition (I50) of an
enzymatic reaction. Biochem. Pharmacol. 22, 3099–3108.
Cheng, Y., Dutschman, G.E., Bastow, K.F., Sarngadharan, M.G., Ting, R.Y.C., 1987.
Human immunodeficiency virus reverse transcriptase. General properties and
its interactions with nucleoside triphosphate analogs.. J. Biol. Chem. 262, 2187–
2189.
Chidgeavadze, Z.G., Scamrov, A.V., Beabealashvilli, R.S., Kvasyuk, E.I., Zaitseva, G.V.,
Mikhailopulo, I.A., Kowollik, G., Langen, P., 1985. 30-Fluoro-20,30-dideoxyribo-
nucleoside 50-triphosphates: terminators of DNA synthesis. FEBS Lett. 183, 275–
278.
Reardon, J.E., Miller, W.H., 1990. Human immunodeficiency virus reverse
transcriptase. Substrate and inhibitor kinetics with thymidine 50-triphosphate
and 30-azido-30-deoxythymidine 50-triphosphate. J. Biol. Chem. 265, 20302–
20307.
Steet, R.A., Melancon, P., Kuchta, R.D., 2000. 30-Azidothymidine potently inhibits the
biosynthesis of highly branched N-linked oligosaccharides and poly-N-
acetyllactosamine chains in cells. J. Biol. Chem. 275, 26812–26820.
´
´
Winska, P., Miazga, A., Poznanski, J., Kulikowski, T., 2010. Partial selective inhibition
of HIV-1 reverse transcriptase and human DNA polymerases and b by thiated
30-fluorothymidine analogue 50-triphosphates. Antiviral Res. 88, 176–181.
c