604
O. Cortezano-Arellano, A. Cordero-Vargas / Tetrahedron Letters 51 (2010) 602–604
4. (a) Matsumoto, T.; Hosya, T.; Suzuki, K. J. Am. Chem. Soc. 1992, 114, 3568; (b)
Hosoya, T.; Takashiro, E.; Matsumoto, T.; Suzuki, K. J. Am. Chem. Soc. 1994, 116,
1004.
Final hydrogenation of the latter in the presence of 10% Pd/C al-
lowed us to prepare defucogilvocarcin 1a in good yield (80%). All
the spectroscopic and physical data of compound 1a fully matched
with those reported by Suzuki5i and Snieckus.5h
In summary, we have accomplished a formal total synthesis of
defucogilvocarcin M. The described route is based on the prepara-
tion of the key aromatic skeleton by using a xanthate-based free
radical sequence. This route is also highly convergent and could
be applied to the synthesis of other aglycons.
5. (a) McGee, L. R.; Confalone, P. N. J. Org. Chem. 1988, 53, 3695; (b) Jung, M. E.;
Jung, Y. H. Tetrahedron Lett. 1988, 29, 2517; (c) Hart, D. J.; Merriman, G. H.
Tetrahedron Lett. 1989, 30, 5093; (d) McKenzie, T. C.; Hassen, W.; McDonald, S. J.
F. Tetrahedron Lett. 1987, 28, 5435; (e) McKenzie, T. C.; Hassen, W. Tetrahedron
Lett. 1987, 28, 2563; (f) McDonald, S. J. F.; McKenzie, T. C.; Hassen, W. J. Chem.
Soc., Chem. Commun. 1987, 1528; (g) Parker, K. A.; Coburn, C. A. J. Org. Chem.
1991, 56, 1666; (h) James, C. A.; Sniekus, V. J. Org. Chem. 2009, 74, 4080; (i)
Takemura, I.; Imura, K.; Matsumoto, T.; Suzuki, K. Org. Lett. 2004, 6, 2503; (j)
Deshpande, P. P.; Martin, O. R. Tetrahedron Lett. 1990, 31, 6313.
6. Cordero-Vargas, A.; Quiclet-Sire, B.; Zard, S. Z. Tetrahedron Lett. 2004, 45,
7335.
7. For reviews on xanthates, see: (a) Zard, S. Z. Angew. Chem., Int. Ed. 1997, 36,
672; (b) Zard, S. Z. In Radicals in Organic Synthesis; Renaud, P., Sibi, M., Eds.;
Wiley-VCH: Weinheim, 2001; pp 90–108.
8. Liard, A.; Quiclet-Sire, B.; Saicic, R.; Zard, S. Z. Tetrahedron Lett. 1997, 38, 1759.
9. Cordero-Vargas, A.; Quiclet-Sire, B.; Zard, S. Z. Org. Lett. 2003, 5, 3717.
10. The radical cyclization was also performed using different reaction conditions,
but lower yields of 8a were obtained (DCP/chlorobenzene: 15% yield; Et3B/O2/
CH2Cl2: 27% yield).
Acknowledgments
We wish to thank the Instituto de Química, UNAM and CONA-
CyT (project 80047) for generous financial support. O. Cortezano
also thanks CONACyT for graduate scholarship (grant number
162040). We also wish to thank Dr. Luis Miranda (UNAM) and
Dr. Fernando Sartillo (BUAP) for helpful, friendly discussions and
corrections.
11. Iodine derivative was prepared by reaction of known 2’-benzyloxy-2-
bromoacetophenone with NaI in acetone. For the preparation of the bromo
derivative, see: Black, M.; Cadogan, J. I. G.; McNab, H.; MacPherson, A. D.;
Roddam, V. P.; Smith, C.; Swenson, H. R. J. Chem. Soc., Perkin Trans. 1 1997, 2483.
12. Ollivier, C.; Bark, T.; Renaud, P. Synthesis 2000, 1598.
Supplementary data
13. The Et3B/O2 system was also applied unsuccessfully to this reaction. For
triethylborane-mediated radical reactions, see: Yorimitsu, H.; Oshima, K. In
Radicals in Organic Synthesis; Renaud, P., Sibi, M., Eds.; Wiley-VCH: Weinheim,
2001; pp 11–27.
Supplementary data (experimental details for all reactions and
spectral data for new compounds) associated with this article can
14. It has been reported that in the presence of Et3B,
a-carbonyl radicals could
evolve the corresponding boron enolates. This is probably the reason why
nothing but reduction product in the attempted radical addition of 9b to vinyl
pivalate was observed. For examples on boron enolates, see: (a) Nozaki, K.;
Oshima, K.; Utimoto, K. Tetrahedron Lett. 1988, 29, 1041; (b) Beraud, V.;
Gnanou, J. C.; Walton, B.; Maillard, B. Tetrahedron Lett. 2000, 41, 1195.
15. Cordero-Vargas, A.; Pérez-Martín, I.; Quiclet-Sire, B.; Zard, S. Z. Org. Biomol.
Chem. 2004, 2, 3018.
16. When we forced the bromination reaction to completion by adding extra
amounts of NBS, the starting material disappeared completely, but a number of
by-products were formed and the global yields (after treatment with DBU)
were considerably lower (40–50%). So, we decided to keep the amount of NBS
at 1.1 equiv and to recycle the unreacted starting material.
References and notes
1. (a) Takahashi, K.; Yoshida, M.; Tomita, F.; Shirahata, K. J. Antibiot. 1981, 34, 266;
(b) Misra, R.; Tritch, H. R., III; Pandey, R. C. J. Antibiot. 1985, 38, 1280; (c) Tse-
Dihn, T.-C.; McGee, L. R. Biochem. Biophys. Res. Commun. 1987, 143, 808; (d) Liu,
T.; Kharel, M. K.; Zhu, L.; Bright, S. A.; Mattingly, C.; Adams, V. R.; Rohr, J.
ChemBioChem 2009, 10, 278.
2. For reviews see: (a) Jaramillo, C.; Knapp, S. Synthesis 1994, 1; (b) Suzuki, K.;
Matsumoto, T. In Preparative Carbohydrate Chemistry; Hanessian, S., Ed.;
Marcel-Dekker: New York, 1997; pp 527–542; (c) Posteme, M. H. D.
Tetrahedron 1992, 48, 8545.
17. (a) Srikrishna, A.; Ravikumar, P. C. Synthesis 2007, 65; (b) Liu, W.; Buck, M.;
Chen, N.; Shang, M.; Taylor, N. J.; Asoud, J.; Wu, X.; Hasinoff, B. B.; Dmitrenko,
G. I. Org. Lett. 2007, 9, 2915.
3. (a) Outten, R. A.; Daves, G. D., Jr. J. Org. Chem. 1989, 54, 29; (b) Cordero-Vargas,
A.; Quiclet-Sire, B.; Zard, S. Z. Org. Biomol. Chem. 2005, 3, 4432.