Article
Macromolecules, Vol. 43, No. 3, 2010 1401
with methylene chloride. The organic layer was washed with
saturated aq NaHCO3 and brine and then dried over anhydrous
sodium sulfate, filtered, and concentrated in vacuo. After the
removal of the solution, the residue was dissolved in methylene
chloride (20 mL) in a 80 mL Schlenk vial wrapped in aluminum
foil, and AgBF4 was added (0.20 g, 1.0 mmol). The mixture was
stirred for 24 h and then filtered to remove the Ag byproduct. To
the filtrate was added sodium 2,4-dinitrophenolate (0.21 g, 1.0
mmol), and the solution was stirred for another 2 h and then
filtered to remove inorganic salt. The solvent was removed in
vacuo. The resulting solid was further treated with a mixture of
methylene chloride and hexane to afford the enantiopure com-
plex (R,R)-3 as a brown solid (0.47 g, 90%). 1H NMR (DMSO-
d6, δ): 8.60 (s, 2H), 7.98 (s, 1H), 7.90 (s, 1H), 7.81 (d, J = 8.4 Hz,
2H,), 7.51 (s, 1H), 7.47 (s, 1H), 7.45 (s, 1H,), 7.41 (s, 1H), 6.35 (d,
J = 8.4 Hz, 2H), 3.55-3.58 (m, 2H), 3.28-3.41 (m, 6H), 3.03 (t,
J = 6.8 Hz, 2H), 2.98-3.01 (m, 2H), 2.90 (s, 3H), 2.16-1.49 (m,
8H), 1.75 (s, 9H), 1.30 (s, 9H), 1.28 (s, 9H), 1.22 (t, J = 7.2 Hz,
6H). 13C NMR (DMSO-d6, δ): 169.8, 164.4, 164.1, 162.0, 160.9,
141.5, 136.9, 135.8, 132.8, 131.8, 128.8, 128.5, 127.7, 127.4,
124.7, 118.6, 118.4, 69.4, 69.0, 59.8, 55.6, 46.6, 35.4, 33.4, 33.3,
31.3, 31.2, 30.2, 29.3, 29.2, 26.8, 24.1, 22.2, 7.9. HRMS (m/z):
Calcd for [C46H65CoN5O7]þ, 858.4216; found, 858.4235.
CO2/CHO Copolymerization Procedure. A stirred mixture of
complex 3 (0.021 g, 0.020 mmol, 1 equiv) was dissolved in CHO
(9.8 mL, 100 mmol, 5000 equiv) to form red-brown solution
under a nitrogen atmosphere. The mixture solution was charged
into a predried 75 mL autoclave equipped with a magnetic
stirrer under a CO2 atmosphere. The autoclave was put into a
bath, which had been set at a given temperature. Then, the
system was pressurized to appropriate pressure with CO2. After
the allotted reaction time, the CO2 pressure was released, and a
small amount of the residue was removed for 1H NMR analysis
to give quantitatively the activity and selectivity of PCHC and
also used for GPC analysis. The unreacted CHO was isolated
under ambient temperature by vacuum (3 mmHg) transfer into a
cooled (-20 °C) receiving flask. The crude polymer was dis-
solved in 10 mL of CHCl3/MeOH (5/1, v/v) mixture and
precipitated from methanol or diethyl ether. This process was
repeated 3-5 times to remove completely the catalyst, and white
polymer was obtained by vacuum drying.
CO2/CHO/Aliphatic Epoxides Terpolymerization Procedure
at High Temperatures. A stirred mixture of complex 3 (0.021 g,
0.020 mmol, 1 equiv.) was dissolved in CHO/aliphatic epoxide
(CHO/aliphatic epoxide/catalyst, 2500/2500/1, molar ratio) to
form a red-brown solution under a nitrogen atmosphere at 0 °C.
The mixture solution was charged into a predried 75 mL
autoclave equipped with a magnetic stirrer under a CO2 atmo-
sphere. After it was pressurized to 1.0 MPa pressure with CO2,
the autoclave was put into a bath whose temperature had been
set at a given temperature, and the solution was stirred for 15
min to allow the solution temperature to reach the bath tem-
perature. Then, the system was pressurized to 2.5 MPa pressure
with CO2. After the allotted reaction time, the autoclave was
cooled to ambient temperature by immersion in an ice bath.
After CO2 was released, a small amount of the residue was taken
and dissolved in CDCl3 for 1H NMR analysis to give quantita-
tively the activity and selectivity of polymer as well as carbonate
linkage. The unreacted epoxides were isolated at ambient tem-
perature by vacuum (3 mm Hg) transfer into a cooled (-20 °C)
receiving flask. The crude terpolymer was dissolved in 10 mL of
CHCl3/MeOH (5/1, v/v) mixture and precipitated from metha-
nol or diethyl ether. This process was repeated three to five times
to remove completely the catalyst, and white polymer was
obtained by vacuum drying.
Outstanding Young Scientist Foundation of NSFC (grant
20625414).
Supporting Information Available: General information,
characterization of various terpolymers, and NMR spectra of
chiral ligand and complex. This material is available free of
References and Notes
(1) Beckman, E. J. Science 1999, 283, 946–947.
(2) Inoue, S.; Koinuma, H.; Tsuruta, T. J. Polym. Sci., Polym. Lett.
1969, 7, 287–292.
(3) For recent reviews on CO2/epoxides copolymerization, see:
(a) Darensbourg, D. J. Chem. Rev. 2007, 107, 2388–2410.
(b) Coates, G. W.; Moore, D. R. Angew. Chem., Int. Ed. 2004, 43,
6618–6639. (c) Darensbourg, D. J.; Mackiewicz, R. M.; Phelps, A. L.;
Billodeaux, D. R. Acc. Chem. Res. 2004, 37, 836–844. (d) Sugimoto, H.;
Inoue, S. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 5561–5573.
(e) Chisholm, M. H.; Zhou, Z. J. Mater. Chem. 2004, 14, 3081–3092.
(4) (a) Darensbourg, D. J.; Holtcamp, M. W. Macromolecules 1995,
28, 7577–7579. (b) Darensbourg, D. J.; Lewis, S. J.; Rodgers, J. L.;
Yarbrough, J. C. Inorg. Chem. 2003, 42, 581–589. (c) Van Meerendonk,
W. J.; Duchateau, R.; Koning, C. E.; Gruter, G. M. Macromolecules
2005, 38, 7306–7313. (d) Darensbourg, D. J.; Holtcamp, M. W.; Struck,
G. E.; Zimmer, M. S.; Niezgoda, S. A.; Rainey, P.; Roberston, J. B.;
Draper, J. D.; Riebenspies, J. H. J. Am. Chem. Soc. 1999, 121, 107–
116. (e) Darensbourg, D. J.; Wildeson, J. R.; Yarbrough, J. C.;
Riebenspies, J. H. J. Am. Chem. Soc. 2000, 122, 12487–12496.
(5) (a) Cheng, M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc.
1998, 120, 11018–11019. (b) Cheng, M.; Moore, D.; Reczek, J.;
Chamberlain, B.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem.
Soc. 2001, 123, 8738–8749. (c) Moore, D. R.; Cheng, M.; Lobkovsky,
E. B.; Coates, G. W. Angew. Chem., Int. Ed. 2002, 41, 2599–2602.
(6) (a) Darensbourg, D. J.; Yarbrough, J. C. J. Am. Chem. Soc. 2002,
124, 6335–6342. (b) Eberhardt, R.; Allmendinger, M.; Rieger, B.
Macromol. Rapid Commun. 2003, 24, 194–196. (c) Darensbourg, D.
J.; Phelps, A. L. Inorg. Chem. 2005, 44, 4622–4629. (d) Li, B.; Zhang,
R.; Lu, X. B. Macromolecules 2007, 40, 2303–2307.
(7) (a) Lu, X. B.; Wang, Y. Angew. Chem., Int. Ed. 2004, 43, 3574–
3577. (b) Cohen, C. T.; Chu, T.; Coates, G. W. J. Am. Chem. Soc. 2005,
127, 10869–10878. (c) Paddock, R. L.; Nguyen, S. T. Macromolecules
2005, 38, 6251–6253. (d) Lu, X. B.; Shi, L.; Wang, Y. M.; Zhang, R.;
Zhang, Y. J.; Peng, X. J.; Zhang, Z. C.; Li, B. J. Am. Chem. Soc. 2006,
128, 1664–1674. (e) Cohen, C. T.; Coates, G. W. J. Polym. Sci., Part
A: Polym. Chem. 2006, 44, 5182–5191. (f) Niu, Y.; Zhang, W.; Pang,
X.; Chen, X.; Zhuang, X.; Jing, X. J. Polym. Sci., Part A: Polym.
Chem. 2007, 45, 5050–5056.
(8) (a) Li, B.; Wu, G. P.; Ren, W. M.; Wang, Y. M.; Rao, D. Y.; Lu, X.
B. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 6102–6113.
(b) Rao, D. Y.; Li, B.; Zhang, R.; Wang, H.; Lu, X. B. Inorg. Chem.
2009, 48, 2830–2836. (c) Nakano, K.; Nakamura, M.; Nozaki, K.
Macromolecules 2009, 42, 6972–6980. (d) Darensbourg, D. J.; Ulusoy,
M.; Karroonnirum, O.; Poland, R. R.; Reibenspies, J. H.; C-etinkaya, B.
Macromolecules 2009, 42, 6992–6998.
(9) (a) Nakano, K.; Kamada, T.; Nozaki, K. Angew. Chem., Int. Ed.
2006, 45, 7274–7277. (b) Noh, E. K.; Na, S. J.; Sujith, S.; Kim, S. W.;
Lee, B. Y. J. Am. Chem. Soc. 2007, 129, 8082–8083. (c) Sujith, S.;
Min, K. K.; Seong, J. E.; Na, S. J.; Lee, B. Y. Angew. Chem., Int. Ed.
2008, 47, 7306–7309.
(10) Qin, Z.; Thomas, C. M.; Lee, S.; Coates, G. W. Angew. Chem., Int.
Ed. 2003, 42, 5484–5487.
(11) Ren, W. M.; Liu, Z. W.; Wen, Y. Q.; Zhang, R.; Lu, X. B. J. Am.
Chem. Soc. 2009, 131, 11509–11518.
(12) (a) Xiao, Y.; Wang, Z.; Ding, K. Macromolecules 2006, 39, 128–
137. (b) Xiao, Y.; Wang, Z.; Ding, K. Chem.;Eur. J. 2005, 11, 3668–
3678. (c) Sugimoto, H.; Kuroda, K. Macromolecules 2008, 41, 312–
317. (d) Sugimoto, H.; Ohshima, H.; Inoue, S. J. Polym. Sci., Part A:
Polym. Chem. 2003, 41, 3549–3555.
(13) Kemper, M. R.; Knight, P. D.; Reung, P. T. R.; Williams, C. K.
Angew. Chem., Int. Ed. 2009, 48, 931–933.
(14) Moore, D. R.; Cheng, M.; Lobkovsky, E. B.; Coates, G. W. J. Am.
Chem. Soc. 2003, 125, 11911–11924.
Acknowledgment. This work was supported by National
Natural Science Foundation of China (NSFC) program (grant
20634040) and National Basic Research Program of China (973
program: 2009CB825300). X.-B.L. gratefully acknowledges the
(15) (a) Darensbourg, D. J.; Wildeson, J. R.; Yarbrough, J. C.;
Reibenspies, J. H. J. Am. Chem. Soc. 2000, 122, 12487–12496.
(b) Quan, Z.; Min, J.; Zhou, Q.; Xie, D.; Liu, J.; Wang, X.; Zhao, X.;
Wang, F. Macromol. Symp. 2003, 195, 281–286.