S. Enthaler et al.
FULL PAPERS
moved in vacuum to yield a white powder. Colourless crystals were ob-
tained by crystallization from toluene.
1.240 mgmÀ3; m (MoKa)=1.339 mmÀ1; 24498 collected reflections; 9664
crystallographically independent reflections (Rint =0.0403); 9664 reflec-
tions with I>2s(l); qmax =25.008; R(Fo)=0.0428 (I>2s(l)); wRACHTUNGTRENNUNG
(F2o)=
49a: yield: 47% (colourless crystals obtained from toluene); IR (KBr):
n˜ =2958 (m), 1590 (s), 1485 (s), 1206 (s), 1169 (w), 1022 (w), 760 (m), 689
0.0794 (all data); 661 refined parameters.
1
(m) cmÀ1; H NMR (200 MHz, C6D6, 258C): d=6.70–7.12 (m, 5H, C6H5),
52: Orthorhombic; space group P212121; a=13.2039(5), b=16.9896(4),
c=25.3489(7) ꢃ; V=5686.4(3) ꢃ3; Z=4; 1calc =1.233 mgmÀ3; m (MoKa)=
1.297 mmÀ1; 22977 collected reflections; 9991 crystallographically inde-
À0.29 ppm (s, 3H, Zn-CH3); 13C NMR (75 MHz, C6D6, 258C): d=158.2
(C=O), 130.4, 122.5, 119.0, À14.2 ppm (Zn-CH3); MS MS (70 eV, EI): m/
z (%)=685 [M+-2H].
pendent reflections (Rint =0.0497); 9991 reflections with I>2s(l); qmax
=
25.008; R(Fo)=0.0398 (I>2s(l)); wRACTHNUTRGNEUNG
(F2o)=0.0533 (all data); 660 refined
49b: yield: 46% (reaction solvent: THF, colourless crystals from tolu-
ene); IR (KBr): n˜ =2957 (m), 1592 (s), 1487 (s), 1246 (s), 1169 (w), 1018
parameters.
(w), 824 (m), 760 (m), 692 (m) cmÀ1 1H NMR (200 MHz, C6D6, 258C):
;
53: Monoclinic; space group P21/n; a=10.1554(2), b=9.4553(2), c=
1calc
15.3500(4) ꢃ;
b=95.380(2)8;
V=1467.45(6) ꢃ3;
Z=2;
=
d=6.50–7.19 (br, Ar), 3.13 (br), 0.83 (br), À0.22 ppm (br); 13C NMR
(75 MHz, C6D6, 258C): d=158.7, 130.4 (br), 129.3 (br), 122.1 (br), 120.4
(br), 119.0 (br), 24.9 (br), À14.3 ppm; MS (70 eV, EI): m/z (%)=335,
285, 235, 169, 94 (Molpeak was not detectable).
1.293 mgmÀ3; m (MoKa)=1.657 mmÀ1; 6500 collected reflections; 2579
crystallograp,hically independent reflections (Rint =0.0214); 2579 reflec-
tions with I>2s(l); qmax =25.008; R(Fo)=0.0243 (I>2s(l)); wRACHTUNGTRENNUNG
(F2o)=
0.0553 (all data); 161 refined parameters.
51: yield: 44% (colorless crystals from toluene); IR (KBr): n˜ =2959(s),
2870 (w), 1463 (m), 1464 (m), 1439 (m), 1384 (w), 1259 (w), 1194 (m),
1045 (s), 1016 (s), 748 (w) cmÀ1; d=(broad signals were found, we
assume a dynamic process) 6.80–7.16 (m, br), 3.76 (br), 2.98 (br), 0.84–
1.62 (br), 0.41 (br), À0.61 ppm (Zn-CH3); 13C NMR (75 MHz, C6D6,
258C): d=153.7, 138.2 (br), 129.3, 125.6, 124.1, 122.2 14.3–31.9 (br),
À13.7 ppm (Zn-CH3); MS (70 eV, EI): m/z (%)=911, 565, 466, 440, 410
(Molpeak was not detectable).
Acknowledgements
This work was supported by the Cluster of Excellence “Unifying Con-
cepts in Catalysis” (sponsored by the Deutsche Forschungsgemeinschaft
and administered by the Technische Universitꢀt Berlin). The authors
thank Prof. M. Beller, Dr. K. Junge, Dipl. Chem. K. Schrçder, and Dipl.
Chem. T. Schulz (Leibniz-Institut fꢂr Katalyse e.V. an der Universitꢀt
Rostock) for general discussions, generous chemical gifts and technical
support.
52: yield: 63% (colourless crystals from toluene); IR (KBr): n˜ =2960 (s),
2868 (m), 1585 (w), 1552 (m), 1456 (m), 1435 (s), 1384 (w), 1362 (w),
1320 (m), 1187 (s), 1110 (w), 1043 (w), 933 (w), 885 (w), 837 (m), 798
1
(w), 756 (s), 681 (w), 550 (w) cmÀ1; H NMR (200 MHz, C6D6, 258C): d=
(broad signals were found, we assume a dynamic process) 6.80–7.17 (m,
br), 3.79 (br), 2.95 (br), 1.02–1.60 (br), 0.67–0.78 (br), 0.33–0.51 (br),
À0.21–0.36 ppm (br); 13C NMR (75 MHz, C6D6, 258C): d=154.1, 138.0
(br), 129.3, 125.6, 124.1 (br), 122.2 21.7–27.9 (br), 11.0, 1.2 ppm; MS
(70 eV, EI): m/z (%)=598, 549, 478, 463, 419, 302, 232, 161 (Molpeak
was not detectable).
Asymmetric Catalysis (Eds.: E. N. Jacobsen, A. Pfaltz, H. Yamamo-
to), Springer, Berlin, 1999; f) R. Noyori, Asymmetric Catalysis in Or-
ganic Synthesis, Wiley, New York, 1994.
[2] a) Transition Metals for Organic Synthesis, 2nd ed. (Eds.: M. Beller,
C. Bolm), Wiley-VCH, Weinheim, 2004; b) B. Cornils, W. A. Herr-
mann, Applied Homogeneous Catalysis with Organometallic Com-
pounds, Wiley-VCH, Weinheim, 1996.
[3] a) T. Okhuma, M. Kitamura, R. Noyori in Catalytic Asymmetric
Synthesis (Ed.: I. Ojima), Wiley-VCH, New York, 2000, Chap. 1;
b) H. Nishiyama in Comprehensive Asymmetric Catalysis (Eds.:
E. N. Jacobsen, A. Pfaltz, H. Yamamoto), Springer, New York, 1999,
Chap. 6.3; c) H. Brunner, H. Nishiyama, K. Itoh in Catalytic Asym-
metric Synthesis (Ed.: I. Ojima), Wiley-VCH, New York, 1993,
Chap. 6.
[4] Leading references for hydrosilylation employing rhodium catalysts:
a) H. Nishiyama, H. Sakaguchi, T. Nakamura, M. Horihata, M.
d) L. H. Gade, V. Cꢄsar, S. Bellemin-Laponnaz, Angew. Chem. 2004,
ing references for hydrosilylation by using ruthenium catalysts: e) G.
53: yield: 78%; (colourless crystals obtained from toluene); IR (KBr):
n˜ =2952 (s), 2871 (m), 1479 (s), 1426(m), 1385 (s), 1366 (m), 1267 (m),
1206 (s), 1093 (m), 1044 (s), 1016 (s), 761 (w) cmÀ1 1H NMR (200 MHz,
;
C6D6, 258C): d=7.33 (d, 2H, J=7.84 Hz, m-H C6H3), 6.87 (t, 1H, J=
7.84 Hz, p-H C6H3), 1.65 (s, 18H, tert-Bu), À0.53 ppm (s, 3H, Zn-CH3);
13C NMR (75 MHz, aceton-d6, 258C): d=159.4, 140.6, 126.0, 120.4, 35.5,
32.6, À13.0 ppm (Zn-CH3); MS MS (70 eV, EI): m/z (%)=566 (M+-2H),
284 ((6)ZnMe).
Single-crystal X-ray structure determination: Crystals were mounted on a
glass capillary in perfluorinated oil and measured in a cold N2 flow. The
data were collected using an Oxford Diffraction Xcalibur S Saphire at
150 K (MoKa radiation, l=0.71073 ꢃ). The structures were solved by
direct methods and refined on F2 with the SHELX-97[19] software pack-
age. The positions of the hydrogen atoms were calculated and considered
isotropically according to a riding model.
CCDC 76536 (49a), CCDC 765370 (49b), CCDC 773477 (51),
CCDC 765368 (52), CCDC 765369 (53) contain the supplementary crys-
tallographic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
49a: Monoclinic; space group P21/c; a=20.0628(6), b=7.9081(2), c=
19.1543(5) ꢃ; b=108.142(3)8; V=2887.92 ꢃ3; Z=5; 1calc =1.596 mgmÀ3
;
m (MoKa)=3.312 mmÀ1; 24228 collected reflections; 9518 crystallographi-
cally independent reflections (Rint =0.0662); 9518 reflections with I>
2s(l); qmax =25.008; R(Fo)=0.0471 (I>2s(l)); wRACTHNUTRGNEUNG
(F2o)=0.0656 (all data);
329 refined parameters.
¯
49b: Triclinic; space group P1; a=8.9595(3), b=9.8203(4), c=
13.0239(5) ꢃ;
a=86.826(3),
b=88.262(3),
g=80.106(3)8;
V=
1126.88(7) ꢃ3; Z=2; 1calc =1.448 mgmÀ3; m (MoKa)=2.152 mmÀ1; 8924
collected reflections; 3968 crystallographically independent reflections
(Rint =0.0348); 3968 reflections with I>2s(l); qmax =25.008; R(Fo)=
0.0384 (I>2s(l)); wR
ACHTUNGTRENNUNG
(F2o)=0.0808 (all data); 255 refined parameters.
51: Monoclinic; space group P21/c; a=17.0669(4), b=12.9770(4), c=
25.2596(6) ꢃ;
b=100.393(2)8;
V=5502.6(2) ꢃ3;
Z=4;
1calc =
2034
ꢁ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Asian J. 2010, 5, 2027 – 2035