Development of Privileged Groebke-Blackburn-Type
Letters in Organic Chemistry, 2009, Vol. 6, No. 6
495
[16]
General procedure for acylation of alkylamino AMEBA resin: To a
solution of the core acid 1 (15 mmol) in DMF (30 mL) were added
REFERENCES AND NOTES
[1]
(a) Groebke, K.; Weber, L.; Mehlin, F. Synlett, 1998, 661-663; (b)
Blackburn, C.; Guan, B.; Fleming, P.; Shiosaki, K.; Tsai, S.
Tetrahedron Lett. 1998, 39, 3635-3638; (c) Bienaymé, H.; Bouzid,
K. Angew. Chem. Int. Ed. Engl., 1998, 37, 2234-2237.
diisopropylcarbodiimide
(DIC,
15
mmol)
and
1-
hydroxybenzotriazole (HOBt, 15 mmol) and the resulting mixture
was stirred for 30 min. Then an aminoalkyl resin 3 (10 mmol) was
added and the mixture was thoroughly shaken for 12 h at room
temperature. The resin was separated by filtration, washed twice
with DMF, methanol, dichloromethane, and methanol, and air-
dried. (Note: we established that the 50% molar excess of the acid
1 was required to achieve maximum degree of resin acylation.
However, the acid 1 can easily be recovered from the filtrate
solution). To cap any non-acylated secondary amine centers on the
resin thus obtained, it was shaken with an excess of 10% solution
of acetic anhydride in DCM for 3 hours, filtered off, washed twice
with DCM, methanol, DCM and methanol, and air-dried.
General procedure for removal of trifluoroacetyl group: the
acylated and acetyl-capped resin 4 was suspended in an excess of a
mixture of hydrazine hydrate and DMF (1:4) and the resulting
mixture was shaken at 80 °C for 72 hours. The resin 4 was
separated by filtration, washed twice with DMF, methanol, DCM,
and methanol, and air-dried to give the resin 5. The full amino
group deprotection was achieved as evidenced by LCMS analysis
of TFA cleavage product off a small amount of 5.
[2]
For the most recent examples of isocyanide-based reactions of 2-
aminoazines see: (a) Rousseau, A. L.; Matlaba, P.; Parkinson, C. J.
Tetrahedron Lett., 2007, 48, 4079-4082. (b) Shaabani, A.;
Soleimani, E.; Maleki, A. Tetrahedron Lett., 2006, 47, 3031-3034.
(c) DiMauro, E. F.; Kennedy, J. M. J. Org. Chem., 2007, 72, 1013-
1016. (d) Kercher, T.; Rao, C.; Bencsik, J. R.; Josey, J. A. J. Comb.
Chem., 2007, 9, 1177-1187. (e) Carballares, S.; Cifuentes, M. M.;
Stephenson, G. A. Tetrahedron Lett., 2007, 48, 2041-2045. (f)
Umkehrer, M.; Ross, G.; Jäger, N.; Burdack, C.; Kolb, J.; Hu, H.;
Alvim-Gaston, M.; Hulme, C. Tetrahedron Lett., 2007, 48, 2213-
2216. (g) Shaabani, A.; Maleki, A.; Moghimi, R. J.; Soleimani, E.
Chem. Pharm. Bull., 2007, 55, 957-958. (h) Adib, M.; Mahdavi,
M.; Noghani, M. A.; Mirzaei, P. Tetrahedron Lett., 2007, 48, 7263-
7265. (i) Sandulenko, Y.; Komarov, A.; Rufanov, K.; Krasavin, M.
Tetrahedron Lett., 2008, 49, 5990-5993.
[17]
[18]
[3]
[4]
Fraser, R.; Fu, J.; Kamboj, R.; Liu, S. PCT Int. Appl.
WO2008134553 (Chem. Abstr., 2008, 1339336).
Singh, R.; Ramesh, U.; Huang, J.; Issakani, S. D.; Tsvetkov, L.;
Petroski, M. D. PCT Int. Appl. WO2008115259 (Chem. Abstr.,
2008, 1158545).
General procedure for acylation/carbamoylation of 5 and TFA
cleavage of the final compounds: A 0.5 mmol aliquote of the resin
5 was dispersed in a solution of the respective acyl chloride or
isocyanate 6 (3 mmol) and pyridine (3 mmol) in DCM (20 mL).
The resulting mixture was shaken at room temperature for 18
hours. The resin 7 was separated by filtration, washed twice with
DMF, methanol, DCM, and methanol, and air-dried. It was then
dispersed in 10% solution of TFA in DCM (3 mL) and shaken at
room temperature for 2 hours. The resin was filtered off, washed
with a small amount of methanol. The combined filtrate and
washings were evaporated to dryness to provide crude compound 8.
Characterization data for representative compounds: 8a – off-white
[5]
Klein, M.; Gericke, R.; Beier, N.; Cezanne, B.; Tsaklakidis, C.;
Mederski, W. Ger. Offen. DE 102006048728 (Chem. Abstr., 2008,
20080417).
[6]
[7]
[8]
Lee, K. C.; Sun, E. T.; Wang, H. U.S. Pat. Appl. Publ. US
2008085896 (Chem. Abstr., 2008, 449628).
Muci, A.; Finer, J. T.; Morgan, B. P.; Russell, A. J.; Morgans, D. J.,
Jr. PCT Int. Appl. WO 2008016648 (Chem. Abstr., 2008, 156992).
Berset, C.; Audetat, S.; Tietz, J.; Gunde, T.; Barberis, A.;
Schumacher, A.; Traxler, P. PCT Int. Appl. WO2006131003
(Chem. Abstr., 2008, 729396).
[19]
1
solid, mp = 184 °C (MeOH, decomp.); H NMR (300 MHz, d6-
[9]
Hembrough, T. A.; Agoston, G. E.; Treston, A. M.; Hanson, A. D.
PCT Int. Appl. WO2007076055 (Chem. Abstr., 2007, 729396).
Evans, B. E.; Rittle, K. E.; Bock, M. G.; DiPardo, R. M.;
Freidinger, R. M.; Whitter, W. L.; Lundell, G. F.; Veber, D. F.;
Anderson P. S. J. Med. Chem., 1988, 31, 2235-2246.
DMSO) ꢀ 10.6 (s, 1H), 8.55 (t, J = 5.3 Hz, 1H), 8.29 (d, J = 6.4 Hz,
1H), 8.04 (d, J = 8.5 Hz, 2H), 7.98 (d, J = 8.5 Hz, 2H), 7.85 (d, J =
8.5 Hz, 1H), 7.70 (t, J = 7.3 Hz, 1H), 7.30 (t, J = 6.9 Hz, 1H), 3.53
(m, 1H), 3.43 (t, J = 5.6 Hz, 2H), 3.35 (dd, J = 5.6, 12.5 Hz, 2H),
2.46 (d, J = 7.0 Hz, 2H), 1.70-1.85 (m, 8H), 0.99 – 1.30 (m, 5H),
[10]
[11]
[12]
Blackburn, C.; Guan, B. Tetrahedron Lett., 2000, 41, 1495-1500.
Yang, K.; Lou, B. U.S. Pat. Appl. Publ. US 20040127719 (Chem.
Abstr., 2004, 532969).
1.08 (d, J = 6.2 Hz, 6H); 13C NMR (75 MHz, d6-DMSO) ꢀ 172.9,
165.5, 158.5 (q, JC-F = 36.0 Hz, CF3COO-), 139.8, 134.8, 132.2,
131.9, 130.1, 127.6, 126.8, 124.9, 117.3, 115.8 (q, JC-F = 294.0 Hz,
CF3COO-), 115.0, 114.6, 70.6, 65.2, 42.9, 37.0, 34.5, 32.6, 29.8,
25.8, 25.6, 22.1; HRMS (EI) calcd for C28H36N4O3 (M+) 476.6241,
[13]
[14]
Krasavin, M.; Tsirulnikov, S.; Nikulnikov, M.; Sandulenko, Y.;
Bukhryakov, K. Tetrahedron Lett., 2008, 49, 7318-7321.
General procedure for reductive amination on AMEBA resin: 4-(4-
formyl-3-methoxyphenoxy)butyryl aminomethyl resin (AMEBA
resin, 5.0 g, 8.35 mmol, 1.67 mmol/g) was dispersed in anhydrous
THF (50 mL) and an amine R1NH2 (2) (41.7 mmol) was added. The
resulting suspension was shaken at room temperature for 2 h.
Sodium triacetoxyborohydride (5.3 g, 25.0 mmol) and acetic acid
(2.4 ml, 41.7 mmol) were added and the resulting mixture was
shaken for an additional 16 h at room temperature. The resin was
separated by filtration, washed twice with THF, MeOH, DCM, and
MeOH and air-dried.
1
found 476.6239. 8d - beige solid, mp = 176-178 °C (MeOH); H
NMR (300 MHz, d6- DMSO) ꢀ 10.8 (s, 1H), 8.34 (d, J = 7.5 Hz,
1H), 8.14 (d, J = 9.6 Hz, 1H), 7.83 (d, J = 9.6 Hz, 1H), 7.66 (t, J =
7.3 Hz, 1H), 7.44 (d, J = 5.3 Hz, 1H), 7.26 (t, J = 7.3 Hz, 1H), 7.10
(d, J = 3.9 Hz, 1H), 7.05 (dd, J = 3.9, 5.9 Hz, 1H), 4.16 (s, 2H),
3.82 (m, 1H), 1.53 (m, 4H), 0.88 (t, J = 7.7 Hz, 6H); 13C NMR (75
MHz, d6-DMSO) ꢀ 170.4, 165.5, 158.2 (q, JC-F = 36.1 Hz,
CF3COO-), 140.1, 136.0, 135.0, 132.8, 132.1, 129.3, 127.7, 127.0,
126.8, 126.5, 125.3, 124.6, 116.7, 115.8 (q, JC-F = 294.2 Hz,
CF3COO-), 114.9, 114.5, 52.2, 36.3, 26.8, 10.5; HRMS (EI) calcd
for C25H26N4O2S (M+) 446.5756, found 446.5761.
[15]
Fritch, P. C.; Fivush, A. M.; Willson, T. M. In Solid-Phase Organic
Synthesis, A. W. Czarnik, Ed.; John Wiley & Sons, Inc.: New
York: 2001, 105-112.