200
S. Goulet et al. / Bioorg. Med. Chem. Lett. 20 (2010) 196–200
O
Acknowledgments
H
N
N
N
N
H
We are grateful to Ginette McKercher and Louise Thauvette for
O
O
O
IC50 determinations and Martin Marquis for replicon EC50 values.
We thank Serge Valois, Colette Boucher and Michael Little for sol-
ubility and Log D determinations as well as Jianmin Duan and Josie
Demarte for CYP450 inhibition and microsomal stability data.
44
OH
References and notes
H
H
N
N
N
N
1. Choo, Q.-L.; Kuo, G.; Weiner, A. J.; Overby, L. R.; Bradley, D. W.; Houghton, M.
Science 1989, 244, 359.
2. Lavanchy, D. Liver Int. 2009, 29, 74.
COOH
COOH
H
H
O
O
O
N
H
47
48
3. Farnik, H.; Mihm, U.; Zeuzem, S. Liver Int. 2009, 29, 23.
4. For reviews on NS5B polymerase inhibitors, see: Beaulieu, P. L. Expert Opin.
Ther. Pat. 2009, 19, 145. and references cited therein.
Figure 3. Conformationally-restricted cinnamic acid isosteres.
5. For a review on inhibition of other HCV targets see, for example: (a) De
Francesco, R.; Migliaccio, G. Nature 2005, 436, 953; (b) Manns, M. P.; Foster, G.
R.; Rockstroh, J. K.; Zeuzem, S.; Zoulim, F.; Houghton, M. Nat. Rev. Drug Disc.
2007, 6, 991.
6. McKercher, G.; Beaulieu, P. L.; Lamarre, D.; LaPlante, S.; Lefebvre, S.; Pellerin, C.;
Thauvette, L.; Kukolj, G. Nucleic Acids Res. 2004, 32, 422.
7. Beaulieu, P. L. Curr. Opin. Drug Discovery Dev. 2006, 9, 618.
8. Beaulieu, P. L.; Bös, M.; Bousquet, Y.; Fazal, G.; Gauthier, J.; Gillard, J.; Goulet, S.;
LaPlante, S.; Poupart, M.-A.; Lefebvre, S.; McKercher, G.; Pellerin, C.; Austel, V.;
Kukolj, G. Bioorg. Med. Chem. Lett. 2004, 14, 119.
9. Beaulieu, P. L.; Bös, M.; Bousquet, Y.; DeRoy, P.; Fazal, G.; Gauthier, J.; Gillard, J.;
Goulet, S.; McKercher, G.; Poupart, M.-A.; Valois, S.; Kukolj, G. Bioorg. Med.
Chem. Lett. 2004, 14, 967.
Table 3
Comparison of ADMET parameters for tryptophan and diamide-based benzimidazole
NS5B inhibitors
Compds Log D
(pH 7.4)
Sola
HLMb
CYP450 IC50
1A2 2C9 2C19 2D6 3A4
>30 2.3 2.4 4.0 0.4
>30 >30 >30 >30 12.3
(lM)
(lg/mL) (min)
3
44
3.8
2.2
<0.07
171
26
44
10. Beaulieu, P. L.; Bousquet, Y.; Gauthier, J.; Gillard, J.; Marquis, M.; McKercher, G.;
Pellerin, C.; Valois, S.; Kukolj, G. J. Med. Chem. 2004, 47, 6884.
11. (a) Harper, S.; Pacini, B.; Avolio, S.; Di Filippo, M.; Migliaccio, G.; Laufer, R.; De
Francesco, R.; Rowley, M.; Narjes, F. J. Med. Chem. 2005, 48, 1314; (b) Ontoria, J.
M.; Martin Hernando, J. I.; Malancona, S.; Attenni, B.; Stansfield, I.; Conte, I.;
Ercolani, C.; Habermann, J.; Ponzi, S.; Di Filippo, M.; Koch, U.; Rowley, M.;
Narjes, F. Bioorg. Med. Chem. Lett. 2006, 16, 4026.
12. Beaulieu, P. L.; Gillard, J.; Bykowski, D.; Brochu, C.; Dansereau, N.; Duceppe, J.-
S.; Haché, B.; Jakalian, A.; Lagacé, L.; LaPlante, S.; McKercher, G.; Moreau, E.;
Perreault, S.; Stammers, T.; Thauvette, L.; Warrington, J.; Kukolj, G. Bioorg. Med.
Chem. Lett. 2006, 16, 4987.
a
Twenty-four hours solubility of amorphous material at pH 7.2.
T1/2 at 10 lM in human liver microsomes (min).
b
In addition to identifying novel structural features that would
provide opportunities for diversification of the SAR in the benz-
imidazole series, we also aimed to improve the physicochemical
properties of our inhibitors. 5-Hydroxytryptophan derivatives such
as 3 suffered from high lipophilicity (Log D = 3.8 at pH 7.4) and
13. (a) Leeson, P. D.; Springthorpe, B. Nat. Rev. Drug Disc. 2007, 6, 881; (b) Gleeson,
M. P. J. Med. Chem. 2008, 51, 817.
14. Kalgutkar, A. S.; Gardner, I.; Obach, R. S.; Shaffer, C. L.; Callegari, E.; Henne, K.
R.; Mutlib, A. E.; Dalvie, D. K.; Lee, J. S.; Nakai, Y.; O’Donnell, J. P.; Boer, J.;
Harriman, S. P. Curr. Drug Metab. 2005, 6, 161.
15. LaPlante, S.; Jakalian, A.; Aubry, N.; Bousquet, Y.; Ferland, J.-M.; Gillard, J.;
Lefebvre, S.; Poirier, M.; Tsantrizos, Y.; Kukolj, G.; Beaulieu, P. L. Angew. Chem.,
Int. Ed. 2004, 43, 4406.
poor solubility (typically <0.1 lg/mL in pH 7.2 buffer). These unde-
sirable properties often lead to liabilities in ADMET (e.g., CYP450
inhibition, poor metabolic stability) and toxicity in vivo.13 In con-
trast, compound 44, with comparable potency to 3 against NS5B
and the cell-based replicon, provided for improved physicochemi-
cal properties (Log D = 2.2 at pH 7.4 and solubility = 171 lg/mL at
pH 7.2), reduced potential for metabolism by human liver micro-
16. All inhibitors in this study were purified to >95% homogeneity by reversed-
phase HPLC and isolated as TFA salts. All compounds were characterized by
mass spectrometry and gave 1H NMR spectra consistent with expected
structures. IC50 values were determined as described in Ref. 6 and are the
average of at least two independent determinations unless indicated
otherwise.
17. EC50 determinations in the cell-based replicon assay were performed in
duplicates using RT-PCR for RNA quantification as described in: Beaulieu, P. L.;
Fazal, G.; Goulet, S.; Kukolj, G.; Poirier, M.; Tsantrizos, Y.; Jolicoeur, E.; Gillard,
J.; Poupart, M.-A.; Rancourt, J. WO Patent WO 03/010141, 2003. Total replicon
RNA levels were normalized to control cellular GAPDH mRNA. Compounds
were devoid of cytotoxicity at inhibitory concentrations. For an overview and
basic protocols on the use of HCV replicons, see Lohmann, V. Meth. Mol. Biol.
2009, 510, 145: Hepatitis C: Methods and Protocols, 2nd ed.; Tang, H., Ed.;
Humana Press.
somes and CYP450 inhibition as depicted in Table 3.
In conclusion, a prospecting study using parallel synthesis
techniques allowed the rapid identification of novel right-hand
sides that offer renewed opportunities for further optimization
of our benzimidazole-based HCV NS5B polymerase inhibitors.
The novel diamide derivatives exhibit comparable potency
(enzymatic and cell-based replicon) as previously described tryp-
tophan-based inhibitors and improved physicochemical proper-
ties. Further optimization of these inhibitors will be reported in
the near future.