1310 Inorg. Chem. 2010, 49, 1310–1312
DOI: 10.1021/ic902339j
Interplay between Hydrido/Dihydrogen and Amine/Amido Ligands in
Ruthenium-Catalyzed Transfer Hydrogenation of Ketones
Alexandre Picot,†,‡ Hellen Dyer,†,‡ Antoine Buchard,§ Audrey Auffrant,§ Laure Vendier,†,‡ Pascal Le Floch,§ and
Sylviane Sabo-Etienne*,†,‡
†CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, F-31077 Toulouse, France,
‡
§
ꢀ
ꢀ ꢀ ꢀ ꢀ
Universite de Toulouse, UPS, INPT, F-31077 Toulouse, France, and Laboratoire “Heteroelements et
ꢀ
coordination”, UMR CNRS 7653 (DCPH), Departement de Chimie Ecole Polytechnique,
91128 Palaiseau Cedex, France
Received November 30, 2009
This work describes the synthesis of three key intermediates of
Noyori-type catalytic systems that are active precatalysts for the
transfer hydrogenation of acetophenone. Isolation of the cationic
chloro(dihydrogen) complex [RuCl(H2)(H2NNPP)(PCy3)][BArf4]
provides a facile synthetic route to the corresponding cationic
and neutral hydrido complexes, and the series highlights the links
between hydride/dihydrogen and amine/amido ligands in neutral
and cationic species.
N ligand capable of acting as a hydrogen acceptor and/or
donor, the literature now provides a wide variety of sys-
tems in which the “NH effect” is predominant.1a,2 In this
area, ruthenium is the metal of choice, despite major
advances recently obtained with other metals, most remark-
ably with iron.3 A number of systems aimed at develo-
ping new ligands favoring such a “NH effect” have been
designed. Mechanistic information has been gained over
the years, but the distinction between various pathways
involving hydride or dihydride species and amine or amido
ligands through inner- or outer-sphere mechanisms is still
difficult. Moreover, the intermediacy of dihydrogen species
remains scarce, despite their possible role in transfer hydro-
genation reactions.1a,2n,4
Some of us have previously reported the synthesis of an
aminophosphonium salt [H2NNHPP][Br] (with H2NNHPP=
H2NC6H4NHPPh2CH2PPh2), which after deprotonation
and reaction with RuCl2(PPh3)4 led to the formation of a
dichloride complex incorporating a tridentate iminophos-
phoranephosphineamine ligand.5 The corresponding hydri-
doamido species RuH(HNNPP)(PPh3) could then be obtai-
ned, and the two complexes were found to catalyze the
transfer hydrogenation of acetophenone with moderate acti-
vity. We now describe a system based on the aminophos-
phonium salt, which allows us to isolate three key species that
are active catalyst precursors for the transfer hydrogenation
of ketones but, more importantly, a system highlighting the
Transfer hydrogenation of ketones by using an alcohol,
preferably isopropyl alcohol, is an interesting alternative to
the classical hydrogenation process requiring the use of
dihydrogen gas.1 Following the pioneering work of Noyori
on metal centers having in their coordination sphere a
*To whom correspondence should be addressed. E-mail:sylviane.sabo@
lcc-toulouse.fr.
(1) (a) Clapham, S. E.; Hadzovic, A.; Morris, R. Coord. Chem. Rev. 2004,
248, 2201. (b) Palmer, M. J.; Wills, M. Tetrahedron: Asymmetry 1999, 10, 2045.
(2) (a) Casey, C. P.; Johnson, J. B. J. Org. Chem. 2003, 68, 1998.
ꢀ
(b) Baratta, W.; Siega, K.; Rigo, P. Chem. Eur. J. 2007, 13, 7479. (c) Carrion,
ꢀ
M. C.; Sepꢀulveda, F.; Jalon, F. A.; Manzano, B. R.; Rodríguez, A. M.
Organometallics 2009, 28, 3822. (d) Del Zotto, A.; Baratta, W.; Ballico, M.;
Herdtweck, E.; Rigo, P. Organometallics 2007, 26, 5636. (e) Baratta, W.; Ballico,
M.; Del Zotto, A.; Herdtweck, E.; Magnolia, S.; Peloso, R.; Siega, K.; Toniutti,
M.; Zangrando, E.; Rigo, P. Organometallics 2009, 28, 4421. (f) Pannetier, N.;
Sortais, J.-B.; Dieng, P. S.; Barloy, L.; Sirlin, C.; Pfeffer, M. Organometallics
2008, 27, 5852. (g) Ikariya, T.; Blacker, A. J. Acc. Chem. Res. 2007, 40, 1300.
(h) Hems, W. P.; Groarke, M.; Zanotti-Gerosa, A.; Grasa, G. A. Acc. Chem. Res.
2007, 40, 1340. (i) Hadzovic, A.; Song, D.; MacLaughlin, C. M.; Morris, R. H.
Organometallics 2007, 26, 5987. (j) Samec, J. S. M.; Backvall, J.-E.; Andersson,
P. G.; Brandt, P. Chem. Soc. Rev. 2006, 35, 237. (k) Ito, M.; Osaka, A.;
Kobayashi, C.; Shiibashi, A.; Ikariya, T. Organometallics 2009, 28, 390.
(l) Ito, M.; Ikariya, T. Chem. Commun. 2007, 5134. (m) Ito, M.; Sakaguchi,
A.; Kobayashi, O.; Ikariya, T. J. Am. Chem. Soc. 2007, 129, 290. (n) Ohkuma, T.;
Utsumi, N.; Tsutsumi, K.; Murata, K.; Sandoval, C.; Noyori, R. J. Am. Chem.
Soc. 2006, 128, 8724. (o) Noyori, R.; Yamakawa, M.; Hashiguchi, S. J. Org.
Chem. 2001, 66, 7931. (p) Petra, D. G. I.; Reek, J. N. H.; Handgraaf, J.-W.; Meijer,
E. J.; Dierkes, P.; Kamer, P. C. J.; Brussee, J.; Schoemaker, H. E.; Van Leeuwen,
P. W. N. M. Chem. Eur. J. 2000, 6, 2818. (q) Yamakawa, M.; Ito, M.; Noyori, R.
J. Am. Chem. Soc. 2000, 122, 1466. (r) Noyori, R.; Hashiguchi, S. Acc. Chem.
Res. 1997, 30, 97. (s) Hamilton, R. J.; Bergens, S. H. J. Am. Chem. Soc. 2008,
130, 11979.
(3) (a) Mikhailine, A.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc.
2009, 131, 1394 and references cited therein.(b) Buchard, A.; Heuclin, H.;
Auffrant, A.; Goff, X. F. L.; Le Floch, P. Dalton Trans. 2009, 1659.
(4) (a) Abbel, R.; Abdur-Rashid, K.; Faatz, M.; Hadzovic, A.; Lough,
A. J.; Morris, R. H. J. Am. Chem. Soc. 2005, 127, 1870. (b) Abdur-Rashid, K.;
Clapham, S. E.; Hadzovic, A.; Harvey, J. N.; Lough, A. J.; Morris, R. H. J. Am.
Chem. Soc. 2002, 124, 15104. (c) Amoroso, D.; Jabri, A.; Yap, G. P. A.; Gusev,
D. G.; Dos Santos, E. N.; Fogg, D. E. Organometallics 2004, 23, 4047. (d) Casey,
C. P.; Beetner, S. E.; Johnson, J. B. J. Am. Chem. Soc. 2008, 130, 2285. (e) Chen,
Y.; Tang, Y.; Liu, S.; Lei, M.; Fang, W. Organometallics 2008, 28, 2078.
(f) Hamilton, R. J.; Leong, C. G.; Bigam, G.; Miskolzie, M.; Bergens, S. H.
J. Am. Chem. Soc. 2005, 127, 4152.
ꢀ
(5) Boubekeur, L.; Ulmer, S.; Ricard, N.; Mezailles, N.; Le Floch, P.
Organometallics 2006, 25, 315.
r
pubs.acs.org/IC
Published on Web 01/22/2010
2010 American Chemical Society