C O M M U N I C A T I O N S
Chart 2. Reactions of Azomethine Ylides with Alkynesa
ions for Friedel-Crafts type alkylations, Mannich reactions, and
alkynylations. Widespread application of these and related reactions
is anticipated as they offer an opportunity for the rapid generation
of molecular complexity.
Acknowledgment. We thank the National Science Foundation
for support of this research (Grant CHE-0911192).
Supporting Information Available: Experimental procedures and
characterization data. This material is available free of charge via the
a See footnote a in Chart 1.
References
A proposed mechanism for the decarboxylative three component
coupling reaction is outlined in Figure 1. Condensation of proline
with an aldehyde results in the formation of oxazolidin-5-one 10,
a known intermediate in the subsequent decarboxylative formation
of the azomethine ylide 11.3d Protonation of the dipole by the
pronucleophile H-Nu results in the formation of ion pairs 12 or
12′ which then collapse into products 5 or 5′. A concerted pathway
for the direct transformation of 11 into 5 or 5′ cannot be ruled out
for certain substrates. This proposed mechanism readily explains
the formation of the two regioisomers and suggests that the
regioselectivity of this reaction depends on the charge distribution
in the azomethine ylide 11, in addition to potential steric factors.
R-groups with electron-withdrawing character appear to stabilize
dipoles with a higher partial negative charge in the benzylic position.
This favors protonation of the benzylic position and ultimately leads
to the formation of regioisomer 5, in accordance with what was
observed for the m-Cl-phenyl bearing product 6b. In contrast,
azomethine ylides bearing aromatic R-groups with electron-donating
character gave rise to the formation of an increased amount of the
regioisomer 5′, which was the case for the p-MeO-phenyl bearing
substrate 6f. However, even in the latter case, regioisomer 5 was
still formed predominantly.
(1) (a) Strecker, A. Liebigs Ann. Chem. 1862, 123, 363. (b) Scho¨nberg, A.;
Moubasher, R. Chem. ReV. 1952, 50, 261.
(2) Rizzi, G. P. J. Org. Chem. 1970, 35, 2069.
(3) For examples, see: (a) Grigg, R.; Thianpatanagul, S. J. Chem. Soc., Chem.
Commun. 1984, 180. (b) Grigg, R.; Aly, M. F.; Sridharan, V.; Thianpa-
tanagul, S. J. Chem. Soc., Chem. Commun. 1984, 182. (c) Ardill, H.; Grigg,
R.; Sridharan, V.; Surendrakumar, S.; Thianpatanagul, S.; Kanajun, S.
J. Chem. Soc., Chem. Commun. 1986, 602. (d) Grigg, R.; Idle, J.;
McMeekin, P.; Vipond, D. J. Chem. Soc., Chem. Commun. 1987, 49. (e)
Grigg, R.; Kilner, C.; Sarker, M. A. B.; Orgaz de la Cierva, C.; Dondas,
H. A. Tetrahedron 2008, 64, 8974.
(4) For selected reviews, see: (a) Padwa, A., Ed. 1,3-Dipolar Cycloaddition
Chemistry, Vol. 1; Wiley: New York, NY, 1984; p 817. (b) Padwa, A.,
Ed. 1,3-Dipolar Cycloaddition Chemistry, Vol. 2.; Wiley: New York, NY,
1984; p 704. (c) Padwa, A.; Pearson, W. H. Synthetic Applications of 1,3-
Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural
Products; Wiley: Chichester, U.K., 2002; Vol. 59, p 940. (d) Na´jera, C.;
Sansano, J. M. Curr. Org. Chem. 2003, 7, 1105. (e) Coldham, I.; Hufton,
R. Chem. ReV. 2005, 105, 2765. (f) Pandey, G.; Banerjee, P.; Gadre, S. R.
Chem. ReV. 2006, 106, 4484.
(5) Azomethine ylides are known to engage in 1,5- or 1,7-electrocyclizations:
(a) Arany, A.; Bendell, D.; Groundwater, P. W.; Garnett, I.; Nyerges, M.
J. Chem. Soc., Perkin Trans. 1999, 1, 2605. (b) Nyerges, M.; Pinter, A.;
Viranyi, A.; Blasko, G.; Toke, L. Tetrahedron 2005, 61, 8199. (c) Nyerges,
M.; Toth, J.; Groundwater, P. W. Synlett 2008, 1269.
(6) Cohen, N.; Blount, J. F.; Lopresti, R. J.; Trullinger, D. P. J. Org. Chem.
1979, 44, 4005.
(7) (a) Zhang, C.; De, C. K.; Mal, R.; Seidel, D. J. Am. Chem. Soc. 2008, 130,
416. (b) Murarka, S.; Zhang, C.; Konieczynska, M. D.; Seidel, D. Org.
Lett. 2009, 11, 129. (c) Zhang, C.; Murarka, S.; Seidel, D. J. Org. Chem.
2009, 74, 419. (d) Murarka, S.; Deb, I.; Zhang, C.; Seidel, D. J. Am. Chem.
Soc. 2009, 131, 13226.
(8) Zheng, L.; Yang, F.; Dang, Q.; Bai, X. Org. Lett. 2008, 10, 889.
(9) (a) Bi, H.-P.; Zhao, L.; Liang, Y.-M.; Li, C.-J. Angew. Chem., Int. Ed.
2009, 48, 792. (b) Bi, H.-P.; Chen, W.-W.; Liang, Y.-M.; Li, C.-J. Org.
Lett. 2009, 11, 3246.
(10) Metal catalyzed decarboxylative couplings have recently emerged as
valuable synthetic tools. For examples, see: (a) Myers, A. G.; Tanaka, D.;
Mannion, M. R. J. Am. Chem. Soc. 2002, 124, 11250. (b) Rayabarapu,
D. K.; Tunge, J. A. J. Am. Chem. Soc. 2005, 127, 13510. (c) Goossen,
L. J.; Deng, G.; Levy, L. M. Science 2006, 313, 662.
Figure 1. Proposed mechanism for the reaction of azomethine ylides with
pronucleophiles.
(11) For selected examples of recent contributions by others, see: (a) Polonka-
Balint, A.; Saraceno, C.; Luda´nyi, K.; Be´nyei, A.; Matyus, P. Synlett 2008,
2846. (b) Trost, B. M.; Livingston, R. C. J. Am. Chem. Soc. 2008, 130,
11970. (c) Yeom, H.-S.; Lee, J.-E.; Shin, S. Angew. Chem., Int. Ed. 2008,
47, 7040. (d) McQuaid, K. M.; Sames, D. J. Am. Chem. Soc. 2009, 131,
402. (e) Vadola, P. A.; Sames, D. J. Am. Chem. Soc. 2009, 131, 16525. (f)
Ruble, J. C.; Hurd, A. R.; Johnson, T. A.; Sherry, D. A.; Barbachyn, M. R.;
Toogood, P. L.; Bundy, G. L.; Graber, D. R.; Kamilar, G. M. J. Am. Chem.
Soc. 2009, 131, 3991. (g) Shikanai, D.; Murase, H.; Hata, T.; Urabe, H.
J. Am. Chem. Soc. 2009, 131, 3166. (h) Tobisu, M.; Nakai, H.; Chatani,
N. J. Org. Chem. 2009, 74, 5471. (i) Frank, E.; Schneider, G.; Kadar, Z.;
Woelfling, J. Eur. J. Org. Chem. 2009, 3544. (j) Mahoney, S. J.; Moon,
D. T.; Hollinger, J.; Fillion, E. Tetrahedron Lett. 2009, 50, 4706. (k) Mori,
K.; Ohshima, Y.; Ehara, K.; Akiyama, T. Chem. Lett. 2009, 38, 524. (l)
Han, S. B.; Kim, I. S.; Han, H.; Krische, M. J. J. Am. Chem. Soc. 2009,
131, 6916.
The mechanism depicted in Figure 1 provides a satisfying
explanation for the failure of N-methylindole to engage in this
reaction. If the protonation of dipole 11 is indeed a prerequisite
for nucleophilic attack, the scope of this reaction might be extended
to other nucleophiles simply by addition of an acid promoter. The
latter could serve to protonate dipole 11, form an iminium ion
related to 12, and subsequently react with nucleophiles that would
otherwise fail to add to azomethine ylides. Indeed, in the presence
of benzoic acid, reaction of N-methyl indole with proline and
benzaldehyde gave rise to the formation of product 13 in 50% yield
(eq 7).17
(12) (a) Burns, N. Z.; Baran, P. S.; Hoffmann, R. W. Angew. Chem., Int. Ed.
2009, 48, 2854. (b) Newhouse, T.; Baran, P. S.; Hoffmann, R. W. Chem.
Soc. ReV. 2009, 38, 3010.
(13) For an excellent review on the R-functionalization of amines, see: Campos,
K. R. Chem. Soc. ReV. 2007, 36, 1069.
(14) Orsini, F.; Pelizzoni, F.; Forte, M.; Destro, R.; Gariboldi, P. Tetrahedron
1988, 44, 519.
(15) Lakhdar, S.; Westermaier, M.; Terrier, F.; Goumont, R.; Boubaker, T.; Ofial,
A. R.; Mayr, H. J. Org. Chem. 2006, 71, 9088.
(16) After the submission of this manuscript, the formation of products 8 under
similar conditions was reported: Bi, H.-P.; Teng, Q.; Guan, M.; Chen, W.-
W.; Liang, Y.-M.; Yao, X.; Li, C.-J. J. Org. Chem. 2010 (DOI: 10.1021/
jo902319h).
(17) The use of lower amounts of benzoic acid gave rise to lower yields.
In summary, we have introduced a new mode of reactivity for
azomethine ylides. The latter act as a convenient source for iminium
JA910719X
9
J. AM. CHEM. SOC. VOL. 132, NO. 6, 2010 1799