ChemComm
Communication
4 Secondary amine catalysis: (a) T. Govender, L. Hojabri,
F. M. Moghaddam and P. I. Arvidsson, Tetrahedron: Asymmetry,
2006, 17, 1763; (b) T. Kano, Y. Tanaka and K. Maruoka, Tetrahedron,
´
2007, 63, 8658; (c) H. Sunden, I. Ibrahem, G.-L. Zhao, L. Eriksson
´
and A. Cordova, Chem.–Eur. J., 2007, 13, 574; (d) S. Bertelsen,
´
P. Diner, R. L. Johansen and K. A. Jørgensen, J. Am. Chem. Soc.,
2007, 129, 1536; (e) D.-Q. Xu, Y.-F. Wang, S.-P. Luo, S. Zhang,
A.-G. Zhong, H. Chen and Z.-Y. Xu, Adv. Synth. Catal., 2008,
350, 2610; ( f ) H. Li, J. Wang, T. E-Nunu, L. Zu, W. Jiang, S. Wei
and W. Wang, Chem. Commun., 2007, 507; (g) L. Zu, S. Zhang, H. Xie
and W. Wang, Org. Lett., 2009, 11, 1627; (h) E. Reyes, G. Talavera,
Fig. 2 Synthesis of oxime 7.
worth noting that both aliphatic enones (entries 9–11) and
naphthyl protected phenols (entries 12 and 13) were suitable
substrates (58–81% yields, 64–82% ee).
The chiral oxazine derivatives 6e (99% ee from recrystalliza-
tion) could be easily transformed into oxime 7 in 71% yield
without the loss of enantiomeric purity (Fig. 2). The absolute
configuration of the product was determined by an X-ray
crystallographic analysis of the single crystal of enantiopure
oxime derivative 7 as (S).
In conclusion, we have developed a chiral phosphoric acid
in combination with a Hoveyda–Grubbs II catalyzed olefin
cross-metathesis–asymmetric oxo-Michael reaction, affording a
variety of benzofuran and benzoxazine derivatives in moderate to
good yields and enantioselectivity.
We thank the National Basic Research Program of China
(973 Program 2010CB833300) and the NSFC (21025209,
21002111, 21121062) for generous financial support.
´
J. L. Vicario, D. Badıa and L. Carrillo, Angew. Chem., Int. Ed., 2009,
48, 5701; (i) P. Kotame, B.-C. Hong and J.-H. Liao, Tetrahedron Lett.,
2009, 50, 704; ( j) X. Zhang, S. Zhang and W. Wang, Angew. Chem.,
Int. Ed., 2010, 49, 1481; (k) C. Liu, X. Zhang, R. Wang and W. Wang,
´
˜
Org. Lett., 2010, 12, 4948; (l) J. Aleman, A. Nu´nez, L. Marzo,
V. Marcos, C. Alvarado and J. L. G. Ruano, Chem.–Eur. J., 2010,
16, 9453.
5 Thiourea and alkaloid catalysis: (a) E. Sekino, T. Kumamoto,
T. Tanaka, T. Ikeda and T. Ishikawa, J. Org. Chem., 2004, 69, 2760;
(b) A. Merschaert, P. Delbeke, D. Daloze and G. Dive, Tetrahedron
Lett., 2004, 45, 4697; (c) C. Dittmer, G. Raabe and L. Hintermann,
Eur. J. Org. Chem., 2007, 5886; (d) M. M. Biddle, M. Lin and
K. A. Scheidt, J. Am. Chem. Soc., 2007, 129, 3830; (e) N. Saito,
A. Ryoda, W. Nakanishi, T. Kumamoto and T. Ishikawa, Eur. J.
Org. Chem., 2008, 2759; ( f ) F.-G. Zhang, Q.-Q. Yang, J. Xuan,
H.-H. Lu, S.-W. Duan, J.-R. Chen and W.-J. Xiao, Org. Lett., 2010,
12, 5636; (g) T. Okamura, K. Asano and S. Matsubara, Chem.
Commun., 2012, 48, 5076; (h) K. Asano and S. Matsubara, J. Am.
Chem. Soc., 2012, 134, 16711.
6 Chiral Brønsted acid catalysis: (a) Q. Gu, Z.-Q. Rong and S.-L. You,
ˇ
´
J. Am. Chem. Soc., 2010, 132, 4056; (b) I. Coric, S. Vellalath and
ˇ
´
B. List, J. Am. Chem. Soc., 2010, 132, 8536; (c) I. Coric, S. Mu¨ller and
B. List, J. Am. Chem. Soc., 2010, 132, 17370; (d) V. Rauniyar,
A. D. Lackner, G. L. Hamilton and F. D. Toste, Science, 2011,
334, 1681; (e) D. M. Rubush, M. A. Morges, B. J. Rose,
D. H. Thamm and T. Rovis, J. Am. Chem. Soc., 2012, 134, 13554;
( f ) Z. Sun, G. A. Winschel, A. Borovika and P. Nagorny, J. Am. Chem.
Soc., 2012, 134, 8074; (g) I. Coric and B. List, Nature, 2012, 483, 315.
7 Chiral Lewis acid catalysis: (a) C. D. Vanderwal and E. N. Jacobsen,
J. Am. Chem. Soc., 2004, 126, 14724; (b) L. Wang, X. Liu, Z. Dong,
X. Fu and X. Feng, Angew. Chem., Int. Ed., 2008, 47, 8670.
8 For reviews on the combination of transition metal and chiral
phosphoric acid: (a) Z. Shao and H. Zhang, Chem. Soc. Rev., 2009,
38, 2745; (b) M. Rueping, R. M. Koenigs and I. Atodiresei,
Chem.–Eur. J., 2010, 16, 9350; (c) J. Zhou, Chem.–Asian J., 2010,
5, 422; (d) C. Zhong and X. Shi, Eur. J. Org. Chem., 2010, 2999;
(e) Z. Du and Z. Shao, Chem. Soc. Rev., 2013, 42, 1337.
Notes and references
1 (a) D. M. Bowen, J. I. DeGraw Jr, V. R. Shah and W. A. Bonner, J. Med.
Chem., 1963, 6, 315; (b) A. H. Banskota, Y. Tezuka, J. K. Prasain,
K. Matsushige, I. Saiki and S. Kadota, J. Nat. Prod., 1998, 61, 896;
ˇ
´
´
(c) C. L. Cespedes, A. Uchoa, J. R. Salazar, F. Perich and F. Pardo,
J. Agric. Food Chem., 2002, 50, 2283; (d) M. Sefkow, Synthesis, 2003,
2595; (e) F. Touzeau, A. Arrault, G. Guillaumet, E. Scalbert,
B. Pfeiffer, M.-C. Rettori, P. Renard and J.-Y. Merour, J. Med. Chem.,
´
2003, 46, 1962; ( f ) B. Achari, S. B. Mandal, P. K. Dutta and
ˇ
ˇ
C. Chowdhury, Synlett, 2004, 2449; (g) J. Ilas, P. S. Anderluh,
M. S. Dolenc and D. Kikelj, Tetrahedron, 2005, 61, 7325;
(h) G.-H. Chu, M. Gu, J. A. Cassel, S. Belanger, T. M. Graczyk,
R. N. DeHaven, N. Conway-James, M. Koblish, P. J. Little,
D. L. DeHaven-Hudkins and R. E. Dolle, Bioorg. Med. Chem. Lett.,
2005, 15, 5114; (i) J. L. Cohen, A. Limon, R. Miledi and
A. R. Chamberlin, Bioorg. Med. Chem. Lett., 2006, 16, 2189;
( j) J. Duan, L. Wang, S. Qian, S. Su and Y. Tang, Arch. Pharmacal
Res., 2008, 31, 965; (k) S. K. Dinda, S. K. Das and G. Panda, Synthesis,
2009, 1886; (l) Z. Liu and Y. Chen, Tetrahedron Lett., 2009, 50, 3790.
9 H. Fuwa, K. Noto and M. Sasaki, Org. Lett., 2010, 12, 1636.
10 (a) Q. Cai, Z.-A. Zhao and S.-L. You, Angew. Chem., Int. Ed., 2009,
48, 7428; (b) Q. Cai, C. Zheng and S.-L. You, Angew. Chem., Int. Ed.,
2010, 49, 8666; (c) Q. Cai, X.-W. Liang, S.-G. Wang, J.-W. Zhang,
X. Zhang and S.-L. You, Org. Lett., 2012, 14, 5022; (d) Q. Cai,
X.-W. Liang, S.-G. Wang and S.-L. You, Org. Biomol. Chem., 2013,
11, 1602.
¨
2 For reviews: (a) C. F. Nising and S. Brase, Chem. Soc. Rev., 2008,
37, 1218; (b) C. F. Nising and S. Brase, Chem. Soc. Rev., 2012, 41, 988.
¨
3 F. Loydl, Justus Liebigs Ann. Chem., 1878, 192, 80.
11 For detailed information, see ESI†.
c
7752 Chem. Commun., 2013, 49, 7750--7752
This journal is The Royal Society of Chemistry 2013