Organic Letters
Letter
Historical Contextual Perspective to the 2010 Nobel Prize. Angew.
Chem., Int. Ed. 2012, 51, 5062. (f) Jana, R.; Pathak, T. P.; Sigman, M.
S. Advances in Transition Metal (Pd,Ni,Fe)-Catalyzed Cross-
Coupling Reactions Using Alkyl-organometallics as Reaction Partners.
Chem. Rev. 2011, 111, 1417.
(5) Lee, C.-J.; Tsai, C.-C.; Hong, S.-H.; Chang, G.-H.; Yang, M.-C.;
̈
Mohlmann, L.; Lin, W. Preparation of Furo[3,2-c]coumarins from 3-
Cinnamoyl-4-hydroxy-2H-chromen-2-ones and Acyl Chlorides: A
Bu3P-Mediated C-Acylation/Cyclization Sequence. Angew. Chem., Int.
Ed. 2015, 54, 8502.
(6) (a) Yang, S.-M.; Wang, C.-Y.; Lin, C.-K.; Karanam, P.; Reddy, G.
M.; Tsai, Y.-L.; Lin, W. Diversity-Oriented Synthesis of Furo[3,2-
c]coumarins and Benzofuranyl Chromenones through Chemo-
selective Acylation/Wittig Reaction. Angew. Chem., Int. Ed. 2018,
57, 1668. (b) Chen, Y.-R.; Reddy, G. M.; Hong, S.-H.; Wang, Y.-Z.;
Yu, J.-K.; Lin, W. Four-Component Synthesis of Phosphonium Salts:
Application Toward an Alternative Approach to Cross-Coupling for
the Synthesis of Bis-Heteroarenes. Angew. Chem., Int. Ed. 2017, 56,
5106. (c) Tsai, Y.-L.; Fan, Y.-S.; Lee, C.-J.; Huang, C.-H.; Das, U.;
Lin, W. An efficient synthesis of trisubstituted oxazoles via
chemoselective O-acylations and intramolecular Wittig reactions.
Chem. Commun. 2013, 49, 10266. (d) Lee, Y.-T.; Lee, Y.-T.; Lee, C.-
J.; Sheu, C.-N.; Lin, B.-Y.; Wang, J.-H.; Lin, W. Chemoselective
synthesis of tetrasubstituted furans via intramolecular Wittig
reactions: mechanism and theoretical analysis. Org. Biomol. Chem.
2013, 11, 5156. (e) Lee, C.-J.; Jang, Y.-J.; Wu, Z.-Z.; Lin, W.
Preparation of Functional Phosphorus Zwitterions from Activated
Alkanes, Aldehydes, and Tributylphosphine: Synthesis of Polysub-
stituted Furo[3,2-c]coumarins. Org. Lett. 2012, 14, 1906. (f) Lee, Y.-
T.; Jang, Y.-J.; Syu, S.-e.; Chou, S.-C.; Lee, C.-J.; Lin, W. Preparation
of functional benzofurans and indoles via chemoselective intra-
molecular Wittig reactions. Chem. Commun. 2012, 48, 8135. (g) Syu,
S.-e.; Lee, Y.-T.; Jang, Y.-J.; Lin, W. Preparation of Functional
Benzofurans, Benzothiophenes, and Indoles Using Ester, Thioester,
and Amide via Intramolecular Wittig Reactions. Org. Lett. 2011, 13,
2970. (h) Kao, T.-T.; Syu, S.-e.; Jhang, Y.-W.; Lin, W. Preparation of
Tetrasubstituted Furans via Intramolecular Wittig Reactions with
Phosphorus Ylides as Intermediates. Org. Lett. 2010, 12, 3066.
(7) Lee, C.-J.; Sheu, C.-N.; Tsai, C.-C.; Wu, Z.-Z.; Lin, W. Direct β-
acylation of 2-arylidene-1,3-indandiones with acyl chlorides catalyzed
by organophosphanes. Chem. Commun. 2014, 50, 5304.
(8) (a) Simeonov, S. P.; Nunes, J. P. M.; Guerra, K.; Kurteva, V. B.;
Afonso, C. A. M. Synthesis of Chiral Cyclopentenones. Chem. Rev.
2016, 116, 5744. (b) Alfonsi, M.; Arcadi, A.; Chiarini, M.; Marinelli,
F. Sequential Rhodium-Catalyzed Stereo- and Regioselective Addition
of Organoboron Derivatives to the Alkyl 4-Hydroxy-2-Alkynoates/
Lactonizaction Reaction. J. Org. Chem. 2007, 72, 9510. (c) Iimura, S.;
Overman, L. E.; Paulini, R.; Zakarian, A. Enantioselective Total
Synthesis of Guanacastepene N Using an Uncommon 7-Endo Heck
Cyclization as a Pivotal Step. J. Am. Chem. Soc. 2006, 128, 13095.
́
(d) Maulide, N.; Marko, I. E. 2-(Trimethylsilyloxy)furan as a Dianion
Equivalent: A Two-Step Synthesis of Functionalized Spirocyclic
Butenolides. Org. Lett. 2006, 8, 3705. (e) Brown, S. P.; Goodwin, N.
C.; MacMillan, D. W. C. The First Enantioselective Organocatalytic
Mukaiyama−Michael Reaction: A Direct Method for the Synthesis of
Enantioenriched γ-Butenolide Architecture. J. Am. Chem. Soc. 2003,
125, 1192. (f) Roush, W. R.; Limberakis, C.; Kunz, R. K.; Barda, D. A.
Diastereoselective Synthesis of the endo- and exo-Spirotetronate
Subunits of the Quartromicins. The First Enantioselective Diels−
Alder Reaction of an Acyclic (Z)-1,3-Diene. Org. Lett. 2002, 4, 1543.
(g) Rao, Y. S. Recent advances in the chemistry of unsaturated
lactones. Chem. Rev. 1976, 76, 625.
(9) Several control experiments have been done. The intermediates
22−26 were characterized by NMR, and the ketene phosphonium salt
VI was confirmed by the HRMS analysis. For the experimental details,
(10) Imide derivative 23 (nitrogen between both of the ketone
groups) has been examined to get desired furanones, but only 24 and
E
Org. Lett. XXXX, XXX, XXX−XXX