O. Kinzel et al. / Bioorg. Med. Chem. Lett. 21 (2011) 4429–4435
4435
10% body weight loss, and no visible physical signs or mortality.
Tumor growth inhibition was observed in all groups (Fig. 2), with
regression being observed at doses of 80 mg/kg bid and upwards.
It appears that in this preclinical model it is necessary to inhibit
the pathway completely for 24 h in order to see optimal anti-tu-
mor activity, as 80 mg/kg qd gives only modest tumor growth inhi-
bition, and this is inferior to the same quantity of compound
administered twice-a-day (i.e., 40 mg/kg bid). Similar finding have
been seen by other groups.14 Parallel, pharmacodynamic (PD) stud-
ies in tumor bearing mice demonstrated that following a single
oral 80 mg/kg dose strong inhibition of the Hh-pathway is ob-
served in tumor biopsies, causing a >80% reduction of Gli-1 mRNA
between 4 and 12 h.
Despite the encouraging profile, and the demonstration of
in vivo anti-tumor activity concern about possible epimerization
of the hydantoin ring stimulated deeper investigation.15 Indeed
epimerization occurs in both rat and human plasma (Fig. 3), with
around 30% conversion within 3 h to a biologically active epimer
(Smo binding IC50 = 50 nM (2% FCS)).
doses of 47 at 40, 80, and 160 mg/kg bid all gave rise to sustained
tumor regression and no body weight loss or adverse effects
were observed in any group. Efficacious exposures correspond to
AUC0-inf = 10.9, 24.6, and 133
lM h with Cmax = 7.8, 19.6 and
41.7 M. Pharmacodynamic studies in tumor biopsies revealed
l
47 leads to a time-dependent down-regulation of Gli-1 mRNA with
77% down regulation at 4 h, and >85% pathway inhibition at 6 and
8 h following dosing at 80 mg/kg.
In summary, a novel series of potent bicyclic hydantoin Smo
antagonists has been developed, with clean off-target profiles
and good pharmacokinetic properties in preclinical species. This
series of compounds demonstrates target engagement in tumor
biopsies, and anti-tumor activity in mouse allograft models depen-
dent on the Hh signalling pathway. On the basis of this data MK-
5710 (47) was selected for further development.
References and notes
1. Rubin, L. L.; de Sauvage, F. J. Nat. Rev. Drug Disc. 2006, 5, 1026.
2. Xie, J. Curr. Oncol. Rep. 2008, 10, 107.
In order to avoid this epimerization, attempts were made to
block this position by the addition of a methyl group (Scheme 2).
The hydantoin scaffold 47 could readily be alkylated in excellent
yield by adding LiHMDS to a thoroughly degassed solution of 27
in THF at ꢀ78 °C, and quenching with MeI. The diastereomers were
separated by chiral SFC chromatography on a Chiralpak AD-H col-
umn eluting with 15% IPA/CO2 to give first 8S-diastereomer 28 and
then 8R-diastereomer 29. Boc-deprotection and urea formation
readily gave 46 and 45, the direct analogues of 4 and 9. Interest-
ingly, unlike the unsubstituted compounds where there was only
a two-fold difference in activity between diastereomers, in the case
of the methylated scaffold there was a striking difference. Whilst
46 displayed comparable activity to 4 in the Smo binding assays,
IC50 = 19 and 21 nM respectively in 2% FCS, and IC50 = 60 and
70 nM in 20% NHS, the other diastereomer 45 proved to be more
3. Gallinari, P.; Filocamo, G.; Jones, P.; Pazzaglia, S.; Steinkuhler, C. Exp. Opin. Drug
Discov. 2009, 4, 525.
4. Ingham, P. W.; McMahon, A. P. Genes Dev. 2001, 15, 3059.
5. Peukert, S.; Miller-Moslin, K. ChemMedChem 2010, 5, 500.
6. Robarge, K. D.; Brunton, S. A.; Castanedo, G. M.; Cui, Y.; Dina, M. S.; Goldsmith,
R.; Gould, S. E.; Guichert, O.; Gunzner, J. L.; Halladay, J.; Jia, W.; Khojasteh, C.;
Koehler, M. F. T.; Kotkow, K.; La, H.; LaLonde, R. L.; Lau, K.; Lee, L.; Marshall, D.;
Marsters, J. C.; Murray, L. J.; Qian, C.; Rubin, L. L.; Salphati, L.; Stanley, M. S.;
Stibbard, J. H. A.; Sutherlin, D. P.; Ubhayaker, S.; Wang, S.; Wong, S.; Xie, M.
Bioorg. Med. Chem. Lett. 2009, 19, 5576.
7. Von Hoff, D. D.; LoRusso, P. M.; Rudin, C. M.; Reddy, J. C.; Yauch, R. L.; Tibes, R.;
Weiss, G. J.; Borad, M. J.; Hann, C. L.; Brahmer, J. R.; Mackey, H. M.; Lum, B. L.;
Darbonne, W. C.; Marsters, J. C.; de Sauvage, F. J., Jr.; Low, J. A. N. Engl. J. Med.
2009, 361, 1164.
8. Malancona, S.; Altamura, S.; Filocamo, G.; Kinzel, O.; Martin Hernando, J. I.;
Rowley, M.; Scarpelli, R.; Steinkühler, C.; Jones, P. Bioorg. Med. Chem. Lett 2011,
9. Compound 1 was separated following two sequential runs, on Chiralpak IB
column using 30% MeOH (0.2% DEA) as modified, and subsequently on Chiralcel
OJ column using 60% MeOH (0.2% DEA).
10. Taipale, J.; Chen, J. K.; Cooper, M. K.; Wang, B.; Mann, R. K.; Milenkovic, L.;
Scotts, M. P.; Beachy, P. A. Nature 2000, 406, 1005; Frank-Kamenetsky, M.;
Zhang, X. M.; Bottega, S.; Guicherit, O.; Wichterle, H.; Dudek, H.; Bumcrot, D.;
Wang, F. Y.; Jones, S.; Shulok, J.; Rubin, L. L.; Porter, J. A. J. Biol. 2002, 1, 10.
11. Chen, J. K.; Taipale, J.; Cooper, M. K.; Beachy, P. A. Genes Dev. 2002, 16, 2743.
12. Newman, P. In Optical Resolution Procedures for Chemical Compounds. Vol. 1.
Amines and Related Compounds; Optical Resolution and Information Center:
Manhattan College, Riverdale, NY, 1978; p. 120.
13. Pazzaglia, S.; Tanori, M.; Mancuso, M.; Rebessi, S.; Leonardi, S.; Di Majo, V.;
Covelli, V.; Atkinson, M. J.; Hahn, H.; Saran, A. Oncogene 2006, 25, 1165;
Pazzaglia, S.; Tanori, M.; Mancuso, M.; Gessi, M.; Pasquali, E.; Oliva, M. A.;
Rebessi, S.; Di Majo, V.; Covelli, V.; Giangaspero, F.; Saran, A. Oncogene 2006, 25,
5575.
14. Miller-Moslin, K.; Peukert, S.; Jain, R. K.; McEwan, M. A.; Karki, R.; Llamas, L.;
Yusuff, N.; He, F.; Li, Y.; Sun, Y.; Dai, M.; Perez, L.; Michael, W.; Sheng, T.; Lei, H.;
Zhang, R.; Williams, J.; Bourret, A.; Ramamurthy, A.; Yuan, J.; Guo, R.;
Matsumoto, M.; Vattay, A.; Maniara, W.; Amaral, A.; Dorsch, M.; Kelleher, J.
F. J. Med. Chem. 2009, 52, 3954.
15. (a) Reist, M.; Carrupt, P.-A.; Testa, B.; Lehmann, S.; Hansen, J. J. Helv. Chim. Acta
1996, 79, 767; (b) Moghaddam, M. F.; Bogdanffy, M. S.; Brown, A.; Ford, K.;
Shalaby, L. Drug Metab. Dispos. 2002, 30, 47; (c) Moghaddam, M. F.; Brown, A.;
Budevska, B. O.; Lam, Z.; Payne, W. G. Drug Metab. Dispos. 2001, 29, 1162; (d)
Veniant, M. M.; Hale, C.; Hungate, R. W.; Gahm, K.; Emery, M. G.; Jona, J.;
Joseph, S.; Adams, J.; Hague, A.; Moniz, G.; Zhang, J.; Bartberger, M. D.; Li, V.;
Syed, R.; Jordan, S.; Komorowski, R.; Chen, M. M.; Cupples, R.; Kim, K. W.; Jean,
D. J.; Johansson, L.; Henriksson, M. A.; Williams, M.; Vallgarda, J.; Fotsch, C.;
Wang, M. J. Med. Chem. 2010, 53, 4481.
than 50-fold less active (IC50 = 1.1 lM). Encouraged by this result,
47 the direct analogue of 42 was prepared from key intermediate
31 using the phenyl carbamate 33 generated in situ. This derivative
maintained all the beneficial characteristics of the unsubstituted
compound (activity, selectivity, PK and activity in vivo), whilst
eliminating the potential for epimerization. In fact, 47 proved to
be an extremely potent Smo antagonist displaying IC50 = 17 nM
in the Light2 cells, whilst binding to Smo with IC50 = 22 nM in
20% NHS. Indeed, 47 inhibited the medulloblastoma proliferation
with CC50 = 0.4 nM.16
No unwanted off-target activities were detected at 10 lM on a
panel of over 150 enzyme and receptor binding assays, while pro-
filing on the cardiac ion channels showed only minimal functional
inhibition of hERG (27% inh. at 30
30 M). In an anesthetized, vagotomized CV dog study no signifi-
cant changes to CV or hemodynamic parameters were measured
following iv infusion (Cmax = 16.0 M). Furthermore, no inhibition
of CYP450s 2D6, 2C9 or 3A4 was observed (IC50 >40 M).
lM), and INa (45% block at
l
l
l
The pharmacokinetic properties of 47 were similar to those of
the unsubstituted derivative. In rats, 47 displayed good PK proper-
ties, with low clearance (Cl = 22 mL/min/kg), T1/2 = 5.1 h, and good
oral bioavailability (F = 40%). The dog PK of 47 is acceptable, and
despite the high Clint in microsomes, in vivo the compound dis-
plays Cl = 21 mL/min/kg and good oral bioavailability (F = 46%).
Efficacy in the primary mouse medulloblastoma allograft model
was also demonstrated at well tolerated doses (Fig. 4). Daily oral
16. The stereochemistry of the 8a-methyltetrahydroimidazo[1,5-a]pyrazine-
1,3(2H,5H)-dione scaffold was confirmed by independent synthesis starting
from
a-aminomethylalanine methyl ester. Yi, H.; Hegedus, L. S. J. Org. Chem.
1997, 62, 3586.