Organometallics 2010, 29, 1067–1069 1067
DOI: 10.1021/om900963p
Metal-Free Frustrated Lewis Pair Catalyzed 1,4-Hydrogenation
of Conjugated Metallocene Dienamines
€
Sina Schwendemann, Tulay Aslı Tumay, Kirill V. Axenov, Ilona Peuser, Gerald Kehr,
€
Roland Frohlich, and Gerhard Erker*
€
€
Organisch-Chemisches Institut der Universitat Munster, Corrensstrasse 40, 48149 Munster, Germany
€
Received November 4, 2009
Summary: Frustrated Lewis pairs, highly active in heterolytic
dihydrogen splitting, were used as active and very selective
hydrogenation catalysts for organometallic substrates. Conju-
gated dienamines fixed at the ferrocene framework and at
the zirconocene nucleus were selectively 1,4-hydrogenated
under catalytic conditions at ambient temperature.
The [3]ferrocenophane systems 1 are readily obtained by
Mannich coupling of 1,10-diacetylferrocene.7 We had used
these compounds extensively as starting materials for the
preparation of ferrocenophane-based ligands:8 e.g. in asym-
metric catalysis.9 These syntheses were usually initiated by
catalytic hydrogenation of both CdC double bonds of the
1,3-connected dienamine bridge by conventional means (i.e.
Pd/C, H2) to yield the corresponding fully saturated [3]ferro-
cenophanes 2. It would be desirable to have a method at hand
that allows for a stepwise, selective catalytic hydrogenation
of the conformationally restricted bridging dienamine to
yield derivatives (such as 3, for example) of these useful
frameworks of a higher functionality.
Heterolytic cleavage and activation of dihydrogen by
frustrated Lewis pairs is receiving quite some attention
lately.1 An increasing number of examples is emerging from
the literature, where such systems are used for metal-free
catalytic hydrogenation.2-6 It seems that catalysts derived
from frustrated Lewis pairs are especially suited for carry-
ing out selective catalytic hydrogenation reactions of sensi-
tive organometallic substrates.6 We here wish to describe
examples of such an application of these novel catalyst
systems in metallocene chemistry.
We recently showed that the intramolecular frustrated
Lewis pair Mes2P-CH2CH2-B(C6F5)2 (4) readily activates
dihydrogen heterolytically to yield the zwitterion 5.3,4 The
4/5 system turned out to be an active catalyst for enamine
hydrogenation under mild conditions.4 We have now used
the catalyst system 4/5 for a rather selective 1,4-hydrogena-
tion of the dienamine unit of the [3]ferrocenophane systems
1 and even of the related ansa-zirconocene derivative 6.
Treatment of 1a (-NR2=-NMe2) with dihydrogen (2.5 bar)
in toluene solution in the presence of 5 mol % of the prehy-
drogenated metal-free catalyst system 5 at ambient temperature
resulted in the rapid formation of the hydrogenation products 3a
and 2a in a 77:23 ratio (Scheme 1).10 We isolated the mixture
2a/3a in a combined yield of about 86%. Compound 3a was
characterized by X-ray diffraction (see Figure 1). It features the
newly formed methyl substituent at the sp2-carbon atom of the
*To whom correspondence should be addressed. E-mail: erker@
uni-muenster.de.
(1) (a) Welch, G. C.; San Juan, R. R.; Masuda, J. D.; Stephan, D. W.
Science 2006, 314, 1124–1126. (b) McCahill, J. S. J.; Welch, G. C.; Stephan,
D. W. Angew. Chem. 2007, 119, 5056-5059; Angew. Chem., Int. Ed.
2007, 46, 4968-4971. (c) Welch, G. C.; Stephan, D. W. J. Am. Chem. Soc.
2007, 129, 1880–1881. (d) Welch, G. C.; Cabrera, L.; Chase, P. A.; Hollink,
E.; Masuda, J. D.; Wei, P.; Stephan, D. W. Dalton Trans. 2007, 3407–3414.
€
(e) Sumerin, V.; Schulz, F.; Nieger, M.; Leskela, M.; Repo, T.; Rieger, B.
Angew. Chem. 2008, 120, 6090–6092; Angew. Chem., Int. Ed. 2008, 47,
6001-6003. (f) Sumerin, V.; Schulz, F.; Atsumi, M.; Wang, C.; Nieger, M.;
€
€
Leskela, M.; Repo, T.; Pyykko, P.; Rieger, B. J. Am. Chem. Soc. 2008, 130,
14117–14119. (g) Chase, P. A.; Stephan, D. W. Angew. Chem. 2008, 120,
7543-7547; Angew. Chem., Int. Ed. 2008, 47, 7433-7437. (h) Holschumacher,
D.; Bannenberg, T.; Hrib, C. G.; Jones, P. G.; Tamm, M. Angew. Chem.
2008, 120, 7538-7542; Angew. Chem., Int. Ed. 2008, 47, 7428-7432.
˚
C3 bridge (values from molecule A: C6-C8=1.338(3) A, C1-
C6-C7 = 114.7(2)°, C1-C6-C8 = 124.0(2)°, C6-C8-C9 =
128.8(2)°). The saturated carbon atom C9 now bears a hydrogen
in addition to the amino substituent (C10-C9-C8=116.6(2)°,
€
(i) Huber, D. P.; Kehr, G.; Bergander, K.; Frohlich, R.; Erker, G.; Tanino, S.;
Ohki, Y.; Tatsumi, K. Organometallics 2008, 27, 5279–5284. (j) Geier, S. J.;
Gilbert, T. M.; Stephan, D. W. J. Am. Chem. Soc. 2008, 130, 12632–12633.
(k) Ullrich, M.; Lough, A. J.; Stephan, D. W. J. Am. Chem. Soc. 2009, 131,
52–53. (l) Ramos, A.; Lough, A. J.; Stephan, D. W. Chem. Commun. 2009,
1118–1120. Reviews: (m) Stephan, D. W. Org. Biomol. Chem. 2008, 6,
1535–1539. (n) Kenward, A. L.; Piers, W. E. Angew. Chem. 2008, 120,
38-42; Angew. Chem., Int. Ed. 2008, 47, 38-41. (o) Stephan, D. W.; Erker,
G. Angew. Chem. 2010, 122, 50-81; Angew. Chem., Int. Ed. 2010, 49,
46-76.
˚
C8-C9-N1=108.9(2)°, C8-C9=1.514(3) A). Compound 3a
features a typical set of eight 1H NMR signals of the pair of Cp
€
€
(7) (a) Knuppel, S.; Frohlich, R.; Erker, G. J. Organomet. Chem.
€
1999, 586, 218–222. (b) Kn€uppel, S.; Frohlich, R.; Erker, G. J. Organomet.
(2) (a) Chase, P. A.; Jurca, T.; Stephan, D. W. Chem. Commun. 2008,
1701–1703. (b) Chen, D.; Klankermayer, J. Chem. Commun. 2008, 2130–
2131.
Chem. 2000, 595, 308–312. (c) Liptau, P.; Kn€uppel, S.; Kehr, G.; Kataeva,
€
O.; Frohlich, R.; Erker, G. J. Organomet. Chem. 2001, 637-639, 621–630.
€
(8) (a) Liptau, P.; Tebben, L.; Kehr, G.; Wibbeling, B.; Frohlich, R.;
€
(3) (a) Spies, P.; Erker, G.; Kehr, G.; Bergander, K.; Frohlich, R.;
Erker, G. Eur. J. Inorg. Chem. 2003, 3590–3600. (b) Liptau, P.; Carmona,
D.; Oro, L. A.; Lahoz, F. J.; Kehr, G.; Erker, G. Eur. J. Inorg. Chem. 2004,
4586–4590.
Grimme, S.; Stephan, D. W. Chem. Commun. 2007, 5072–5074. (b) Spies,
€
P.; Kehr, G.; Bergander, K.; Wibbeling, B.; Frohlich, R.; Erker, G. Dalton
€
Trans. 2009, 1534–1541.
(4) Spies, P.; Schwendemann, S.; Lange, S.; Kehr, G.; Frohlich, R.;
(9) (a) Liptau, P.; Tebben, L.; Kehr, G.; Frohlich, R.; Erker, G.;
€
Hollmann, F.; Rieger, B. Eur. J. Org. Chem. 2005, 1909–1918. (b) Liptau,
€
Erker, G. Angew. Chem. 2008, 120, 7654-7657; Angew. Chem., Int. Ed.
2008, 47, 7543-7546.
P.; Seki, T.; Kehr, G.; Abele, A.; Frohlich, R.; Erker, G.; Grimme, S.
Organometallics 2003, 22, 2226–2232.
€
(5) Wang, H.; Frohlich, R.; Kehr, G.; Erker, G. Chem. Commun.
(10) It is likely that the small amount of the fully saturated hydro-
genation product 2 is a slowly formed follow-up product of 3 and is
potentially formed from 3 via an isomerization pathway. For details see
the Supporting Information.
2008, 5966–5968.
(6) Axenov, K. V.; Kehr, G.; Frohlich, R.; Erker, G. J. Am. Chem.
€
Soc. 2009, 131, 3454–3455.
r
2010 American Chemical Society
Published on Web 02/08/2010
pubs.acs.org/Organometallics