Somnath Nag et al.
UPDATES
the comments and suggestions by anonymous referees which
led to a significant improvement in the contents of this manu-
script.
dination of pyrazole. This simple and straightforward
synthetic achievement updates the literature for C N
cross-coupling in 4-iodopyrazoles.
À
Experimental Section
References
General Procedure as Exemplified for the Synthesis
of Compounds 6a and 7a from 5a
[1] Only a few examples: a) L. Yet, in: Comprehensive
Heterocyclic Chemistry, Vol. 4, (Eds.: A. R. Katrizky,
C. A. Ramsden, E. F. V. Scriven, R. J. K. Taylor); Per-
gamon, London, 2008, pp 1–141; b) M. A. Chowdhury,
K. R. A. Abdellatif, Y. Dong, D. Das, M. R. Suresh,
E. E. Knaus, J. Med. Chem. 2009, 52, 1525–1529; c) S.
Howard, V. Berdini, J. A. Boulstridge, M. G. Carr,
D. M. Cross, J. Curry, L. A. Devine, T. R. Early, L.
Fazal, A. L. Gill, M. Heathcote, S. Maman, J. E. Mat-
thews, R. L. McMenamin, E. F. Navarro, M. A.
OꢁBrien, M. OꢁReilly, D. C. Rees, M. Reule, D. Tisi, G.
Williams, M. Vinkovic, P. G. Wyatt, J. Med. Chem.
2009, 52, 379–388; d) R. L. Dow, P. A. Carpino, J. R.
Hadcock, S. C. Black, P. A. Iredale, P. DaSilva-Jardine,
S. R. Schneider, E. S. Paight, D. A. Griffith, D. O. Scott,
R. E. OꢁConnor, C. I. Nduaka, J. Med. Chem. 2009, 52,
2652–2655; e) T. Huynh, Z. Chen, S. Pang, J. Geng, T.
Bandiera, S. Bindi, P. Vianello, F. Roletto, S. Thieffine,
A. Galvani, W. Vaccaro, M. A. Poss, G. L. Trainor,
M. V. Lorenzi, M. Gottardis, L. Jayaraman, A. V. Pur-
andare, Bioorg. Med. Chem. Lett. 2009, 19, 2924–2927;
f) R. Kasimogullari, M. Bulbul, H. Gunhan, H. Guler-
yuz, Bioorg. Med. Chem. 2009, 17, 3295–3301; g) O.
Bruno, C. Brullo, F. Bondavalli, S. Schenone, S. Spisani,
M. S. Falzarano, K. Varani, E. Barocelli, V. Ballabeni,
C. Giorgio, M. Tognolini, Bioorg. Med. Chem. 2009, 17,
3379–3387; h) A.-R. Li, M. G. Johnson, J. Liu, X.
Chen, X. Du, J. T. Mihalic, J. Deignan, D. J. Gustin, J.
Duquette, Z. Fu, L. Zhu, A. P. Marcus, P. Bergeron,
L. R. McGee, J. Danao, B. Lemon, T. Carabeo, T. Sulli-
van, J. Ma, L. Tang, G. Tonn, T. L. Collins, J. C.
Medina, Bioorg. Med. Chem. Lett. 2008, 18, 688–693;
i) K. Moriyama, T. Suzuki, K. Negishi, J. D. Graci, C. N.
Thompson, C. E. Cameron, M. Watanabe, J. Med.
Chem. 2008, 51, 159–166; j) R. Lin, G. Chiu, Y. Yu,
P. J. Connolly, S. Li, Y. Lu, M. Adams, A. R. F. Pes-
quera, S. L. Emanuel, L. M. Greenberger, Bioorg. Med.
Chem. Lett. 2007, 17, 4557–4561.
To a solution of amide 5a (0.80 g, 1.86 mmol) in DMF
(10 mL), Cs2CO3 (1.21 g, 3.73 mmol), CuI (0.071 g,
0.37 mmol) and ethylenediamine (50 mL, 0.74 mmol) were
added and the reaction mixture was heated at 1008C for
24 h under a nitrogen atmosphere. Thereafter, the solvent
was removed under reduced pressure and the residue was
taken up in ethyl acetate (40 mL) and washed with water
(50 mL). The aqueous layer was further extracted with ethyl
acetate (2ꢂ25 mL) and the collected organic layer was
washed with brine, dried over anhydrous Na2SO4 and con-
centrated under vacuum. Column chromatography of the
crude product over silica gel furnished the pure annulated
pyrazole 6a as a white solid (ethyl acetate/hexanes, 3:10;
yield: 0.25 g, 45%) and the deiodinated pyrazole 7a also as a
white solid (ethyl acetate/hexanes, 3:7; yield: 0.12 g, 21%).
6-Methyl-2,3-diphenyl-2,4-dihydro-5H-pyrazoloACTHNUTRGENUG[N 4,3-b]pyr-
idin-5-one (6a): mp 240–2428C; Rf =0.31 (ethyl acetate/hex-
anes, 2:3); IR (KBr): nmax =1611 (C=N), 1654 (CONH),
1
3454 (NH) cmÀ1; H NMR (CDCl3, 300 MHz): d=2.27 (d,
3H, J=1.2 Hz), 7.25–7.28 (m, 3H), 7.34–7.45 (m, 7H), 7.73
(d, 1H, J=1.2 Hz), 9.31 (brs, 1H); 13C NMR (CDCl3,
75 MHz): d=17.9, 123.6, 125.1, 125.6, 127.9, 128.8, 129.1,
129.2, 129.3, 132.3, 137.7, 139.8, 164.0; MS (ES+): m/z=
302.3 (M+ +1); anal. calcd. for C19H15N3O (exact mass:
301.1215): C 75.73, H 5.02, N 13.94; found: C 75.98, H 5.0,
N 13.89.
(E)-3-(1,5-Diphenyl-1H-pyrazol-3-yl)-2-methylprop-2-en-
amide (7a): mp 123–1248C; Rf =0.13 (ethyl acetate/hexanes,
2:3); IR (KBr): nmax =1616 (C=N), 1668 (CONH2), 3417
1
(NH2) cmÀ1; H NMR (CDCl3, 200 MHz): d=2.35 (d, 3H,
J=1.1 Hz), 5.94 (brs, 2H), 6.69 (s, 1H), 7.21–7.36 (m, 11H);
13C NMR (CDCl3, 50 MHz): d=14.8, 109.5, 125.2, 126.1,
127.8, 128.6, 128.8, 129.0, 130.2, 131.9, 139.9, 144.0, 148.8,
171.8; MS (ES+): m/z=304.2 (M+ +1), 287.3 (M+À16);
anal. calcd. for C19H17N3O (exact mass: 303.1372): C 75.23,
H 5.65, N 13.85; found: C 75.28, H 5.41, N 13.96.
[2] a) R. Chinchilla, C. Njera, M. Yus, Chem. Rev. 2004,
104, 2667–2722, and references cited therein; b) M.
Schnurch, R. Flasik, A. F. Khan, M. Spina, M. D. Miho-
vilovic, P. Stanetty, Eur. J. Org. Chem. 2006, 3283–
3307, and references cited therein; c) S. Guillou, O.
Nesmes, M. S. Ermolenko, Y. L. Janin, Tetrahedron
2009, 65, 3529–3535.
Supporting Information
Preparations of all compounds along with their characteriza-
1
tion data and copies of H and 13C NMR spectra are avail-
able in Supporting Information.
[3] a) C. M. P. Pereira, F. H. Quina, F. A. N. Silva, D. J.
Emmerich, A. Machulek, Jr., Mini Rev Org. Chem.
2008, 5, 331–335, and references cited therein; b) J. P.
Waldo, S. Mehta, R. C. Larock, J. Org. Chem. 2008, 73,
6666–6670.
[4] I. I. Grandberg, A. N. Kost, Progress in Pyrazole
Chemistry, in: Advances in Heterocyclic Chemistry, Vol.
6, (Eds.: A. R. Katrizky, A. J. Boulton), Academic
Press, London, 1966, pp 347–429.
Acknowledgements
Two of the authors (SN and MN) gratefully acknowledge the
financial support from University Grant Commission and
Council of Scientific and Industrial Research, New Delhi.
This work was supported by a grant from Department of Sci-
ence and Technology, New Delhi. The authors acknowledge
2722
ꢀ 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2009, 351, 2715 – 2723