N. Moriyama et al. / Tetrahedron: Asymmetry 20 (2009) 2677–2687
2687
(s, 3H), 2.11 (s, 3H), 3.13 (dd, J = 12.8 and 1.8 Hz, 1H), 3.84–3.95 (m,
1H), 4.04 (dd, J = 8.4 and 3.3 Hz, 1H), 4.10 (d, J = 12.5 Hz, 1H), 4.44
(t, J = 7.8 Hz, 1H), 4.92–5.03 (m, 1H), 5.19 (br s, 1H); IR (KBr) 2936,
1763, 1431, 1374, 1258, 1073, 986, 764 cmꢀ1. Anal. Calcd for
C11H15NO6: C, 51.36; H, 5.88; N, 5.45. Found: C, 51.43; H, 5.93;
N, 5.40. Major isomer of 11 was detected by HPLC method; YMC-
Pack SIL (0.46 cmø ꢂ 15 cm), n-hexane/ethanol = 5:1, wavelength:
210 nm, flow rate: 0.5 mL/min, retention time: 21.6 min.
1124, 918, 770 cmꢀ1. Anal. Calcd for C24H29NO10S2: C, 51.88; H,
5.26; N, 2.52. Found: C, 51.92; H, 5.39; N, 2.52.
References
1. Recent representative reviews: (a) Heightman, T. D.; Vasella, A. T. Angew.
Chem., Int. Ed. 1999, 38, 750–770; (b) Butters, T. D.; Dwek, R. A.; Platt, F. M.
Chem. Rev. 2000, 100, 4683–4696; (c) Afarinkia, K.; Bahar, A. Tetrahedron:
Asymmetry 2005, 16, 1239–1287; (d) Huang, P.-Q. Synlett 2006, 1133–1149.
2. Recent representative literatures: (a) Asano, K.; Hakogi, T.; Iwama, S.;
Katsumura, S. Chem. Commun. 1999, 41–42; (b) Sawada, D.; Takahashi, H.;
Ikegami, S. Tetrahedron Lett. 2003, 44, 3085–3088; (c) Moriyama, H.; Tsukida,
T.; Inoue, Y.; Yokota, K.; Yoshino, K.; Kondo, H.; Miura, N.; Nishimura, S. J. Med.
Chem. 2004, 47, 1930–1938; (d) Felpin, F.-X.; Bouberkeur, K.; Lebrenton, J. J.
Org. Chem. 2004, 69, 1497–1503; (e) Kato, A.; Kato, N.; Kano, E.; Adachi, I.;
Ikeda, K.; Yu, L.; Okamoto, T.; Banba, Y.; Ouchi, H.; Takahata, H.; Asano, N. J.
Med. Chem. 2005, 48, 2036–2044; (f) Boglio, C.; Stahlke, S.; Thorimbert, S.;
Malacria, M. Org. Lett. 2005, 7, 4851–4854; (g) Calderón, F.; Doyagüez, E. G.;
Fernández-Mayoralas, A. J. Org. Chem. 2006, 71, 6258–6261; (h) Song, X.;
Hollingsworth, R. I. Tetrahedron Lett. 2007, 48, 3115–3118; (i) Yokoyama, H.;
Kobayashi, H.; Miyazawa, M.; Yamaguchi, S.; Hirai, Y. Heterocycles 2007, 74,
283–292; (j) Ruiz, M.; Ruanova, T. M.; Blanco, O.; Núñez, F.; Pato, C.; Ojea, V. J.
Org. Chem. 2008, 73, 2240–2255; (k) Pandey, G.; Bharadwaj, K. C.; Khan, M. I.;
Shashidhara, K. S.; Puranik, V. G. Org. Biomol. Chem. 2008, 6, 2587–2595; (l)
Ferreira, F.; Botuha, C.; Chemla, F.; Pérez-Luna, A. J. Org. Chem. 2009, 74, 2238–
2241; (m) Aravind, A.; Sankar, M. G.; Varghese, B.; Baskaran, S. J. Org. Chem.
2009, 74, 2858–2861.
3. Andersen, S. M.; Ekhart, C.; Lundt, I.; Stütz, A. E. Carbohydr. Res. 2000, 326, 22–
33.
4. Lemaire, M.; Veny, N.; Gefflaut, T.; Gallienne, E.; Chênevert, R.; Bolte, J. Synlett
2002, 1359–1361.
5. Furukubo, S.; Moriyama, N.; Onomura, O.; Matsumura, Y. Tetrahedron Lett.
2004, 45, 8177–8181.
6. (a) Shono, T.; Hamaguchi, H.; Matsumura, Y. J. Am. Chem. Soc. 1975, 97, 4264–
4268; (b) Nyberg, K.; Servin, R. Acta Chem. Scand. Ser. B 1976, 30, 640–642; (c)
Shono, T.; Matsumura, Y.; Kanazawa, T.; Habuka, M.; Uchida, K.; Toyoda, K. J.
Chem. Res. (M) 1984, 2876–2889.
7. (a) Nyberg, K. Synthesis 1976, 545–546; (b) Shono, T.; Matsumura, Y.; Tsubata,
T.; Sugihara, Y.; Yamane, S.-I.; Kanazawa, T.; Aoki, T. J. Am. Chem. Soc. 1982, 104,
6697–6703; (c) Kim, S.; Yoon, J.-Y. Synthesis 2000, 1622–1630; (d) Okitsu, O.;
Suzuki, R.; Kobayashi, S. J. Org. Chem. 2001, 66, 809–823.
8. Shono, T.; Matsumura, Y.; Onomura, O.; Ogaki, M.; Kanazawa, T. J. Org. Chem.
1987, 52, 536–541.
9. (a) Shono, T.; Matsumura, Y.; Onomura, O.; Yamada, Y. Tetrahedron Lett. 1987,
28, 4073–4074; (b) Matsumura, Y.; Kanda, Y.; Shirai, K.; Onomura, O.; Maki, T.
Tetrahedron 2000, 56, 7411–7422; (c) Onomura, O.; Kanda, Y.; Nakamura, Y.;
Maki, T.; Matsumura, Y. Tetrahedron Lett. 2002, 43, 3229–3231; (d) Kanda, Y.;
Onomura, O.; Maki, T.; Matsumura, Y. Chirality 2003, 44, 89–94; (e) Matsumura,
Y.; Onomura, O.; Suzuki, H.; Furukubo, S.; Maki, T.; Li, C.-J. Tetrahedron Lett.
2003, 44, 5519–5522; (f) Onomura, O.; Kanda, Y.; Imai, M.; Matsumura, Y.
Electrochim. Acta 2005, 50, 4926–4935; (g) Minato, D.; Imai, M.; Kanda, Y.;
Onomura, O.; Matsumura, Y. Tetrahedron Lett. 2006, 47, 5485–5488; (h)
Matsumura, Y.; Minato, D.; Onomura, O. J. Organomet. Chem. 2007, 692, 654–
663; (i) Onomura, O.; Fujimura, N.; Oda, T.; Matsumura, Y.; Demizu, Y.
Heterocycles 2008, 76, 177–182.
10. (a) Shono, T.; Matsumura, Y.; Onomura, O.; Kanazawa, T.; Habuka, M. Chem.
Lett. 1984, 1101–1104; (b) Shono, T.; Matsumura, Y.; Onomura, O.; Sato, M. J.
Org. Chem. 1988, 53, 4118–4121; (c) Libendi, S. S.; Ogino, T.; Onomura, O.;
Matsumura, Y. J. Electrochem. Soc. 2007, 154, E31–E35.
11. The ratio of cis-12 and trans-12 was determined on the basis of the NMR
spectrum of trans-12b: Williams, S. J.; Hoos, R.; Withers, S. G. J. Am. Chem. Soc.
2000, 122, 2223–2235.
12. (a) Shono, T.; Matsumura, Y.; Inoue, K. J. Chem. Soc., Chem. Commun. 1983,
1169–1171; (b) Matsumura, Y.; Nakamura, Y.; Maki, T.; Onomura, O.
Tetrahedron Lett. 2000, 41, 7685–7689.
4.12. Synthesis of (5S)-acetoxymethyl-(2S,3R)-dihydroxy-N-
methoxycarbonylpiperidine (2S,3R,5S)-30 and successive
tosylation
Into a round-bottomed flask (25 mL) equipped with a magnetic
stirrer and containing a solution of 4 (0.243 g, 1 mmol) in acetone
(0.5 mL) and H2O (2.5 mL) was added NMO (50% in water, 0.351 g,
1.5 mmol). To a stirred solution at room temperature was added
osmium tetraoxide (4 wt % solution in water, two drops,
0.01 mmol). After the mixture was stirred overnight at room tem-
perature, 10% aqueous Na2S2O3 (5 mL) was added into the reaction
mixture. The resulting mixture was concentrated under reduced
pressure and to the residue was added water (1 mL). The organic
portion was extracted with AcOEt (15 mL ꢂ 8). The combined
extracts were dried over anhydrous MgSO4, filtered, and concen-
trated in vacuo to afford a crude mixture of (5S)-acetoxymethyl-
1,2,3-trihydroxy-N-methoxycarbonylpiperidine and (5S)-acetoxy-
methyl-2,3-dihydroxy-1-methoxy-N-methoxycarbonylpiperidine
(0.5:0.5): 1H NMR (CDCl3) d 1.70–1.85 (m, 1H), 1.89–2.04 (m, 1H),
2.06 (s, 3H), 3.33 (s, 1.5H), 3.74 and 3.76 (2s, 3H), 3.91–4.08 (m,
1H), 4.10–4.20 (m, 1H), 4.21–4.42 (m, 2H), 4.47–4.75 (m, 1H),
5.35–5.44 and 5.51–5.62 and 5.79–5.84 (3m, 1H); IR (neat) 3413,
2959, 1742, 1449, 1356, 1240, 1086, 774 cmꢀ1
.
To the mixture was added Et3SiH (0.174 g, 1.5 mmol) in CH2Cl2
(3 mL) and added methanesulfonic acid (0.192 g, 2.0 mmol) at 0 °C.
After stirring for 10 min, the reaction mixture was added to a mix-
ture of AcOEt (20 mL) and saturated aqueous NaHCO3 (20 mL). The
organic portion was extracted with AcOEt (20 mL ꢂ 3) and the com-
bined organic layers were washed with saturated aqueous NaHCO3
(20 mL). After the extracts were dried over anhydrous MgSO4, fil-
tered, and concentrated in vacuo, the residue was chromatographed
on silica gel (AcOEt/n-hexane = 3:1) to afford 5S-acetoxymethyl-
2S,3R-dihydroxy-N-methoxycarbonylpiperidine (302S,3R,5S) in 78%
yield from 4. (2S,3R,5S)-30: ½a D30
ꢁ
¼ ꢀ6:0 (c 1.0, CHCl3); 1H NMR
(CDCl3) d 1.73 and 1.77 (2d, J = 4.2 Hz, 1H), 1.91–2.02 (m, 1H), 2.05
(s, 3H), 2.24 (d, J = 6.5 Hz, 1H), 2.31–2.48 (br s, 1H), 3.10 (d,
J = 15.0 Hz, 1H), 3.72 (s, 3H), 3.80–3.96 (m, 2H), 4.06–4.38 (m, 3H),
4.57–4.73 (br s, 1H); IR (neat) 3447, 2959, 1744, 1698, 1456, 1370,
1258, 1140, 1080, 770 cmꢀ1; HRMS m/z Calcd for C10H17NO6 (M+):
247.1056. Found: 247.1058.
To (2S,3R,5S)-30 (0.1 g, 0.4 mmol) was added p-toluenesulfonyl
chloride (0.381 g, 2 mmol), Et3N (0.049 g, 0.48 mmol), and DMAP
(0.244 g, 2 mmol) in CH2Cl2 (2 mL). After the mixture was stirred for
three days at room temperature, into a mixture of AcOEt (20 mL)
and saturatedaqueousNaHCO3 (10 mL)was pouredthe reactionmix-
ture. The organic portion was extracted with AcOEt (20 mL ꢂ 3). After
the extracts were dried over anhydrous MgSO4, filtered, and concen-
trated in vacuo, the residue was chromatographed on silica gel
(AcOEt/n-hexane = 1:6) to afford 5S-acetoxymethyl-2S,3R-bis(p-tol-
uenesulfonyloxy)-N-methoxycarbonylpiperidine (2S,3R,5S)-31 in
13. Methoxylated compound 14 purified with silica gel column chromatography
was transformed into a certain amount of unsaturated compound 15 as a by-
product. Accordingly the yield of 15 by two steps without purification of 14
was better than that with purification of 14. The yield of 17 was improved
without purification of the corresponding methoxylated compound.
14. Crystallographicdata for (2S,3S,5S)-6, (2R,3R,5S)-21, (2S,3R,5S)-31, and (2R,3S,5S)-
28: CCDC 246337, 246338, 746282, and 746283, contain the supplementary
crystallographic data for this paper. The data can be obtained free of charge via
uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road,
Cambridge CB2 1EZ, UK; fax: +44(0)-1223-336033.
15. (a) Matsumura, Y.; Tomita, T. Tetrahedron Lett. 1994, 35, 3737–3740; (b)
Matsumura, Y.; Yoshimoto, Y.; Horikawa, C.; Maki, T.; Watanabe, M.
Tetrahedron Lett. 1996, 37, 5715–5718; (c) Matsumura, Y.; Asano, T.;
Nakagiri, T.; Onomura, O. J. Chin. Chem. Soc. 1998, 45, 297–302.
16. The allylic 1,3-strain in F may compel the acetoxymethyl group at the 5-
position to be quasiaxial: (a) Hoffmann, R. W. Chem. Rev. 1989, 89, 1841–1860;
(b) Momose, T.; Toyooka, N. J. Org. Chem. 1994, 59, 943–945; (c) Matsumura, Y.;
Inoue, M.; Nakamura, Y.; Talib, I. L.; Maki, T.; Onomura, O. Tetrahedron Lett.
2000, 41, 4619–4622.
46% yield. ½a 3D0
¼ þ32:4 (c 1.0, CHCl3); mp 136–139 °C (from AcOEt
ꢁ
and n-hexane); 1H NMR (CDCl3) d 1.64 and 1.71 (2d, J = 3.6 Hz, 1H),
2.01 (s, 3H), 2.10–2.26 (m, 1H), 2.46 (s, 6H), 3.09 (d, J = 15.3 Hz, 1H),
3.69 (s, 3H), 3.97–4.16 (m, 2H), 4.45 (d, J = 15.3 Hz, 1H), 4.55–4.72
(m, 3H), 7.30–7.39 (m, 4H), 7.64 (d, J = 8.1 Hz, 2H), 7.79 (d,
J = 8.4 Hz, 2H); IR (KBr) 2957, 1748, 1701, 1449, 1364, 1246, 1140,