2362 Journal of Medicinal Chemistry, 2010, Vol. 53, No. 6
Malakoutikhah et al.
(12) Schwarze, S. R.; Ho, A.; Vocero-Akbani, A.; Dowdy, S. D. In Vivo
Protein Transduction: Delivery of a Biologically Active Protein
into the Mouse. Science 1999, 285, 1569–1572.
Membranes-Influence of Physicochemical Properties. Eur. J.
Pharm. Sci. 2007, 31, 32–42.
(35) Sasaki, H.; Mori, Y.; Nakamura, J.; Shibasaki, J. Synthesis and
Anticonvulsant Activity of 1-Acyl-2-pyrrolidinone Derivatives.
J. Med. Chem. 1991, 34, 628–633.
(36) Carelli, V.; Liberatore, F.; Scipione, L.; Giorgioni, G.; Di Stefano,
A.; Impicciatore, M.; Ballabeni, V.; Calcina, F.; Magnaninic, F.;
Barocellic, E. Synthesis and Biological Evaluation of GABA
Derivatives Able to Cross the Blood-Brain Barrier in Rats. Bioorg.
Med. Chem. Lett. 2003, 13, 3765–3769.
ꢀ
ꢀ
(13) Teixido, M.; Zurita, E.; Malakoutikhah, M.; Tarrago, T.; Giralt,
E. Diketopiperazines as a Tool for the Study of Transport across
the Blood-Brain Barrier (BBB) and Their Potential Use as BBB-
Shuttles. J. Am. Chem. Soc. 2007, 129, 11802–11813.
ꢀ
(14) Malakoutikhah, M.; Teixido, M.; Giralt, E. Toward an Optimal
Blood-Brain Barrier Shuttle by Synthesis and Evaluation of
Peptide Libraries. J. Med. Chem. 2008, 51, 4881–4889.
(15) Kansy, M.; Senner, F.; Gubernator, K. Physicochemical High
Throughput Screening: Parallel Artificial Membrane Permeation
Assay in the Description of Passive Absorption Processes. J. Med.
Chem. 1998, 41, 1007–1010.
(37) Kakee, A.; Takanaga, H.; Teraskui, T.; Naito, M.; Tsuruo, T.;
Sugiyama, Y. Efflux of a Suppressive Neurotransmitter, GABA,
Across the Blood-Brain Barrier. J. Neurochem. 2001, 79,
110–118.
(16) Di, L.; Kerns, E. H.; Fan, K.; McConnell, O. J.; Carter, G. T. High
Throughput Artificial Membrane Permeability Assay for Blood-
Brain Barrier. Eur. J. Med. Chem. 2003, 38, 223–232.
(38) Zhang, Y.; Liu, G. Q. Sodium and Chloride-Dependent High and
Low-Affinity Uptakes of GABA by Brain Capillary Endothelial
Cells. Brain Res. 1998, 808, 1–7.
(17) Ottaviani, G.; Martel, S.; Carrupt, P. Parallel Artificial Membrane
Permeability Assay: A New Membrane for the Fast Prediction
of Passive Human Skin Permeability. J. Med. Chem. 2006, 49,
3948–3954.
(18) Ottaviani, G.; Martel, S.; Carrupt, P. In Silico and in Vitro Filters
for the Fast Estimation of Skin Permeation and Distribution of
New Chemical Entities. J. Med. Chem. 2007, 50, 742–748.
(19) Li, C.; Nair, L.; Liu, T.; Li, F.; Pichardo, J.; Agrawal, S.; Chase, R.;
Tong, X.; Uss, A. S.; Bogen, S.; Njorge, F. G.; Morrison, R. A.;
Cheng, K. C. Correlation between PAMPA Permeability and
Cellular Activities of Hepatitis C Virus Protease Inhibitors. Bio-
chem. Pharmocol. 2008, 75, 1186–1197.
(20) Know, J. H.; Escher, B. A Modified Parallel Artificial Membrane
Permeability Assay for Evaluating the Bioconcentration of Highly
Hydrophobic Chemicals in Fish. Environ. Sci. Technol. 2008, 42,
1787–1793.
(21) Kovo, M.; Kogman, N.; Ovadia, O.; Nakash, I.; Golan, A.; Hoff-
man, A. Carrier-Mediated Transport of Metformin Across the
Human Placenta Determined by Using the ex Vivo Perfusion of the
Placental Cotyledon Model. Prenatal Diagn. 2008, 28, 544–548.
(22) Ottaviani, G.; Martel, S.; Escarala, C.; Nicolle, E.; Carrupt, P. A.
The PAMPA Technique as a HTS Tool for Partition Coefficients
Determination in Different Solvent/Water Systems. Eur. J. Pharm.
Sci. 2008, 35, 68–75.
(39) Shashoua, V. E.; Jacob, J. N.; Ridge, R.; Campbell, A.; Baldessarini,
R. J. γ-Aminobutyric Acid Esters. 1. Synthesis, Brain Uptake, and
Pharmacological Studies of Aliphatic and Steroid Esters of
γ-Aminobutyric Acid. J. Med. Chem. 1984, 27, 659–664.
(40) Fery, H. H.; Loscher, W. Cetyl GABA: Effect on Convulsant
Thresholds in Mice and Acute Toxicity. Neuropharmacology 1980,
19, 217–220.
(41) Galzigna, L.; Garbin, L.; Bianchi, M.; Marzotto, A. Properties of
Two Derivatives of γ-Aminobutyric Acid (GABA) Capable of
Abolishing Cardiazol- and Bicuculline-Induce Convulsions in the
rat. Arch. Int. Pharmacodyn. Ther. 1978, 235, 73–85.
(42) Anderson, W. R.; Simpkins, J. W.; Woodard, P. A.; Winwood, D.;
Stern, W. C.; Bodor, N. Anxiolytic Activity of a Brain Delivery
System for GABA. Psychopharmacology 1987, 92, 157–63.
(43) Eytan, G. D.; Regev, R.; Oren, G.; Hurwitz, C. D.; Assaraf, Y. G.
Efficiency of P-Glycoprotein-Mediated Exclusion of Rhodamine
Dyes from Multidrug-Resistant Cells Is Determined by Their
Passive Transmembrane Movement Rate. Eur. J. Biochem. 1997,
248, 104–112.
(44) Barrett-Jolley, R. Nipecotic Acid Directly Activates GABAA-Like
Ion Channels. Br. J. Pharmacol. 2001, 133, 673–678.
(45) Ali, F. E.; Bondinell, W. E.; Dandridge, P. A.; Frazee, J. S.;
Garvey, E.; Girard, G. R.; Kaiser, C.; Ku, T. W.; Lafferty, J. J.;
Moonsammy, G. I.; Oh, H. J.; Rush, J. A.; Setler, P. E.; Stringer,
O. D.; Venslavsky, J. W.; Volpe, B. W.; Yunger, L. M.; Zirkle,
C. L. Orally Active and Potent Inhibitors of γ-Aminobutyric
Acid Uptake. J. Med. Chem. 1985, 28, 653–660.
(23) Hwang, K. K.; Martin, N. E.; Jiang, L. Permeation Prediction of
M100240 Using the Parallel Artificial Membrane Permeability
Assay. J. Pharm. Pharmaceut. Sci. 2003, 6, 315–320.
(46) Bonina, F. P.; Arenare, L.; Palagiano, F.; Saija, A.; Nava, F.;
Trombetta, D.; Caprariis, P. Synthesis, Stability, and Pharmaco-
logical Evaluation of Nipecotic Acid Prodrugs. J. Pharm. Sci. 1999,
88, 561–567.
(24) Di, L.; Kerns, E. H.; Bezar, I. F.; Petusky, S. L.; Huang, Y.
Comparison of Blood-Brain Barrier Permeability Assays: In Situ
Brain Perfusion, MDR1-MDCKII and PAMPA-BBB. J. Pharm.
Sci. 2009, 98, 1980–1991.
(47) Manfredini, S.;Pavan, B.;Vertuani, S.;Scaglianti, M.; Compagnone,
D.; Biondi, C.; Scatturin, A.; Tanganelli, S.; Ferraro, L.; Prasad, P.;
Dalpiaz, A. Design, Synthesis and Activity of Ascorbic Acid
Prodrugs of Nipecotic, Kynurenic and Diclophenamic Acids,
Liable to Increase Neurotropic Activity. J. Med. Chem. 2002, 45,
559–562.
(48) Wang, H.; Hussain, A. A.; Wedlund, P. J. Nipecotic Acid: Systemic
Availability and Brain Delivery after Nasal Administration of
Nipecotic Acid and n-Butyl Nipecotate to Rats. Pharm. Res.
2005, 22, 556–562.
(49) Andersen, K. E.; Braestrup, C.; Gronwald, F. C.; Jorgensen, A. S.;
Nielsen, E. B.; Sonnewald, U.; Sorensen, P. O.; Suzdak, P. D.;
Knutsen, J. S. The Synthesis of Novel GABA Uptake Inhibitors. 1.
Elucidation of the Structure-Activity Studies Leading to the
Choice of (R)-1-[4,4-Bis(3-methyl-2-thienyl)-3-butenyl]-3-piperidine-
carboxylic Acid (Tiagabine) as an Anticonvulsant Drug Candidate.
J. Med. Chem. 1993, 36, 1716–1725.
(25) Nielsen, P. E.; Avdeef, A. PAMPA;a Drug Absorption in Vitro
Model. 8. Apparent Filter Porosity and Unstirred Water Layer.
Eur. J. Pharm. Sci. 2004, 22, 33–41.
(26) Ruell, J. A.; Tsinman, K. L.; Avdeef, A. PAMPA;a Drug
Absorption in Vitro Model. 8. Unstirred Water Layer in Iso-pH
Mapping Assays and pKaflux;Optimized Design (pOD-PAMPA).
Eur. J. Pharm. Sci. 2003, 20, 393–402.
(27) Avdeef, A. Absorption and Drug Development; Wiley-Interscience:
New York, 2003; pp 226-227.
(28) Youdim, K. A.; Avdeef, A.; Abbott, N. J. In Vitro Trans-
Monolayer Permeability Calculations: Often Forgotten Assump-
tions. Drug Discovery Today 2003, 8, 997–1003.
(29) Liu, H.; Sabus, C.; Caretr, G. T.; Du, C.; Avdeef, A.; Tischler, M.
In Vitro Permeability of Poorly Aqueous Soluble Compounds
Using Different Solubilizers in the PAMPA Assay with Liquid
Chromatography/Mass Spectrometry Detection. Pharm. Res.
2003, 20, 1820–1826.
(30) Balimane, P. V.; Pace, E.; Chong, S.; Zhu, M.; Jelam, M.; Van Pelt,
C. K. A Novel High-Throughput Automated Chip-Based Nano-
electrospray Tandem Mass Spectrometric Method for PAMPA
Sample Analysis. J. Pharm. Biomed. Anal. 2005, 39, 8–16.
(31) Pardridge, W. M. Transport of Small Molecules through the
Blood-Brain Barrier: Biology and Methodology. Adv. Drug
Delivery Rev. 1995, 15, 5–36.
(32) Mahar Doan, K. M.; Humphreys, J. E.; Webster, L. O.; Wring,
S. A.; Shampine, L. J.; Serabjit-Singh, C. J.; Adkison, K. K.; Polli,
J. W. Passive Permeability and P-Glycoprotein-Mediated Efflux
Differentiate Central Nervous System (CNS) and Non-CNS
Marketed Drugs. J. Pharmacol. Exp. Ther. 2002, 303, 1029–1037.
(33) Sheehy, B. A.; Ho, N. F. H.; Burton, P. S.; Day, J. S.; Geary, T. G.;
Thompson, D. P. Transport of Model Peptides Across Ascaris
Suum Cuticle. Mol. Biochem. Parasitol. 2000, 105, 39–49.
(34) Fischera, H.; Kansya, M.; Avdeef, A.; Senner, F. Permeation of
Permanently Positive Charged Molecules through Artificial
(50) Kelty, C. J.; Brown, N. J.; Reed, M. W. R.; Ackroyd, R. The Use of
5-Aminolevulinic Acid as a Photosensitiser in Photodynamic
Therapy and Photodiagnosis. Photochem. Photobiol. Sci. 2002, 1,
158–168.
(51) Ciburis,A.;Gadonas, D.;Gadonas, R.;Didziapetriene, J.;Gudinaviciene,
~
I.; Grazeniene, G.; Kaskelyte, D.; Piskarskas, A.; Skauminas, K.;
Smilgevicius, V.; Sukackaite., A. 5-Aminolevulinic Acid Induced
Protoporphyrin IX Fluorescence for Detection of Brain Tumor Cells
In Vivo. Exp. Oncol. 2003, 25, 51–57.
(52) Lopez, R. F. V.; Bentley, M. V. L. B.; Delgado-Charro, M. B.;
Salomon, D.; Van Den Bergh, H.; Lange, N.; Guy, R. H. Enhanced
Delivery of 5-Aminolevulinic Acid Esters by Iontophoresis in Vivo.
Photochem. Photobiol. 2003, 77, 304–308.
(53) Rud, E.; Gederaas, O.; Hogset, A.; Berg, K. 5-Aminolevulinic
Acid, but not 5-Aminolevulinic Acid Esters, is Transported into
Adenocarcinoma Cells by System BETA Transporters. Photo-
chem. Photobiol. 2000, 71, 640–647.