C O M M U N I C A T I O N S
Scheme 5. ꢀ-Silylketones versus the Corresponding Boronates
Acknowledgment. Financial support was provided by the NSF
(CHE-0715138) and the NIH (GM-57212). K-s. L. is grateful for
a Schering-Plough Graduate Fellowship. We thank Ms. Jamie
O’Brien for helpful suggestions. Mass spectrometry facilities at
Boston College are supported by the NSF (DBI-0619576).
Supporting Information Available: Experimental procedures and
spectral, analytical data for all products. This material is available free
References
complex 12 delivers substantially lower E/Z ratios and levels of
enantiomeric purity (20 in 2:1 Z:E and 94.5:5.5 and 54:46 er,
respectively; 21 in >98% E and 69.5:30.5 er). (2) The high alkene
stereoselectivity and enantioselectivity with which 21 is formed
indicates that reaction likely occurs through an s-cis diene. (3) The
enantiomerically enriched allylsilanes can be used in reactions with
various electrophiles; the diastereoselective oxidation affording 22
is a case in point. Further development of this class of conjugate
additions is ongoing in these laboratories.
(1) For reviews on the use of organosilanes in organic synthesis, see: (a) Chan,
T. H.; Wang, D. Chem. ReV. 1992, 92, 995. (b) Jones, G. R.; Landais, Y.
Tetrahedron 1996, 52, 7599. (c) Fleming, I.; Barbero, A.; Walter, D. Chem.
ReV. 1997, 97, 2063. (d) Suginome, M.; Ito, Y. Chem. ReV. 2000, 100, 3221.
(2) For a review on the utility of ꢀ-silylcarbonyls in synthesis, see: Fleming,
I., Science of Synthesis; Thieme: Stuttgart, Germany, 2002; Vol. 4; p 927.
(3) Enantiomerically enriched ꢀ-silylcarbonyls have been prepared by catalytic
conjugate hydride additions to trisubstituted Si-substituted enones. See:
Lipshutz, B. H.; Tanaka, N.; Taft, B. R.; Lee, C.-t. Org. Lett. 2006, 8,
1963.
(4) Enantiomerically enriched ꢀ-silylcarbonyls can be accessed by catalytic
conjugate additions of alkyl or aryl groups to silyl-substituted enones. See:
(a) Shintani, R.; Okamoto, K.; Hayashi, T. Org. Lett. 2005, 7, 4757. (b)
Balskus, E. P.; Jacobsen, E. N. J. Am. Chem. Soc. 2006, 128, 6810. (c)
Kacprzynski, M. A.; Kazane, S. A.; May, T. L.; Hoveyda, A. H. Org. Lett.
2007, 9, 3187.
(5) Catalytic non-enantioselective methods that afford ꢀ-silylcarbonyls have
been disclosed. For example, see: Conjugate silane additions: (a) Lipshutz,
B. H.; Sclafani, J. A.; Takanami, T. J. Am. Chem. Soc. 1998, 120, 4021.
(b) Auer, G.; Weiner, B.; Oestreich, M. Synthesis 2006, 2113. Conjugate
disilane additions: (c) Tamao, K.; Okazaki, S.; Kumada, M. J. Organomet.
Chem. 1978, 146, 87. (d) Ito, H.; Ishizuka, T.; Tateiwa, J.-i.; Sonoda, M.;
Hosomi, A. J. Am. Chem. Soc. 1998, 120, 11196. (e) Ogoshi, S.; Tomiyasu,
S.; Morita, M.; Kurosawa, H. J. Am. Chem. Soc. 2002, 124, 11598. (f)
Clark, C. T.; Lake, J. F.; Scheidt, K. A. J. Am. Chem. Soc. 2004, 126, 84.
(6) (a) Hayashi, T.; Matsumoto, Y.; Ito, Y. J. Am. Chem. Soc. 1988, 110, 5579.
(b) Matsumoto, Y.; Hayashi, T.; Ito, Y. Tetrahedron 1994, 50, 335.
(7) (a) Walter, C.; Auer, G.; Oestreich, M. Angew. Chem., Int. Ed. 2006, 45,
5675. (b) Walter, C.; Oestreich, M. Angew. Chem., Int. Ed. 2008, 47, 3818.
(c) Walter, C.; Fro¨hlich, R.; Oestreich, M. Tetrahedron 2009, 65, 5513.
(8) Lee, K.-S.; Hoveyda, A. H. J. Org. Chem. 2009, 74, 4455.
(9) (a) Laitar, D. S.; Mu¨ller, P.; Sadighi, J. P. J. Am. Chem. Soc. 2005, 127,
17196. (b) Laitar, D. S.; Tsui, E. Y.; Sadighi, J. P. Organometallics 2006,
25, 2405.
The Cu-catalyzed enantioselective silane conjugate additions
described herein are of substantial utility and complement the related
processes involving boronates,19 which, upon oxidation, can also
furnish the corresponding ꢀ-hydroxy carbonyls. The present set of
protocols, however, offers distinct advantages; two examples are
illustrated in Scheme 5. First, whereas the boron enolate derived
from catalytic boronate conjugate addition to six-membered ring
enones undergoes facile aldol addition,11,19d the corresponding
enolates from reactions of cyclopentenone or cycloheptenone are
unreactive.20 In contrast, as depicted in Scheme 5, the boron
enolates of all ring sizes (only five- and seven-membered rings
shown) obtained through catalytic silyl additions react readily with
aldehydes to afford the desired ꢀ-silyl,ꢀ-hydroxyketones 23 and
24. The neighboring donor C-Si bonds likely enhance the
nucleophilicity of the boron enolates through hyperconjugative
effects;21 in contrast, the low-lying C-B σ* in the related boronate
addition products can diminish enolate nucleophilicity.
(10) A value of ∼125 kcal/mol-1 is attributed to a B-O bond (vs ∼110 kcal/
mol-1 for a Si-O bond). See: (a) Sanderson, R. T. Chemical Bonds and
Bond Energy; Academic Press: New York, 1976; p 128. (b) Sanderson,
R. T. Polar CoValence; Academic Press: New York, 1983; p 82.
(11) Lee, K.-S.; Zhugralin, A. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2009,
131, 7253.
(12) (a) Lee, Y.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 3160. (b) Lee,
Y.; Jang, H.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 18234.
(13) Van Veldhuizen, J. J.; Campbell, J. E.; Giudici, R. E.; Hoveyda, A. H.
J. Am. Chem. Soc. 2005, 127, 6877.
(14) Brown, M. K.; May, T. L.; Baxter, C. A.; Hoveyda, A. H. Angew. Chem.,
Int. Ed. 2007, 46, 1097.
(15) For representative applications of the corresponding C2-symmetric imida-
zolinium salt, see: (a) Chaulagain, M. R.; Sormunen, G. J.; Montgomery,
J. J. Am. Chem. Soc. 2007, 129, 9568. (b) Lillo, V.; Prieto, A.; Bonet, A.;
D´ıaz-Requejo, M. M.; Ram´ırez, J.; Pe´rez, P. J.; Ferna´ndez, E. Organome-
tallics 2009, 28, 659. (c) Reference 12a.
Second, pinacolatoboronates are sensitive to common organo-
metallics such as aryl- or alkyllithiums as well as the derived
Grignard reagents. In contrast, ꢀ-silylketones can be easily func-
tionalized, often with high diastereoselectivity, through reaction with
such reagents. The example in Scheme 5 (f26) is representative;
the ꢀ-boronate ketones are converted to unidentifiable products.22
As also presented in Scheme 5, subsequent oxidation23 (f27)
furnishes the enantiomerically enriched syn-1,3-diol. A similar
procedure with a boronate product would require prior oxidation
and protection of the resulting carbinol (to avoid retro-aldol upon
treatment with arylmetal).
(16) See the Supporting Information for details regarding these screening studies.
(17) For design of C1-symmetric monodentate chiral NHC-Cu complexes and
comparison of their utility vs C2-symmetric variants, see ref 8.
(18) For example, the NMes-containing derivative of 12 promotes formation of
ꢀ-silylketone 6 in >98% conversion and 91:9 er (vs 97.5:2.5 er).
(19) (a) Lee, J.-E.; Yun, J. Angew. Chem., Int. Ed. 2008, 47, 145. (b) Reference
15b. (c) Sim, H.-S.; Feng, X.; Yun, J. Chem.sEur. J. 2009, 15, 1939. (d)
Chen, I.-H.; Yin, L.; Itano, W.; Kanai, M.; Shibasaki, M. J. Am. Chem.
Soc. 2009, 131, 11664.
The Cu-catalyzed additions should prove to be of utility in
complex molecule synthesis. For example, ketoester 28 (eq 1),
accessed through a racemic synthesis followed by HPLC separation
of the enantiomers, was recently utilized in an approach to
biologically active natural product (+)-erysotramidine.24 As shown
in eq 1, the desired intermediate can now be easily synthesized by
a one-pot procedure in 92% yield, as a single diastereomer and in
97.5:2.5 er. The stability of the silyl group toward n-BuLi (see
above) allows for conversion of the boron enolate to its more
nucleophilic Li-based derivative.
(20) Lee, K.-S.; Hoveyda, A. H., unpublished results.
(21) Houk, K. N.; Moses, S. R.; Wu, Y.-D.; Rondan, N. G.; Ja¨ger, V.; Schohe,
R.; Fronczek, F. R. J. Am. Chem. Soc. 1984, 106, 3880.
(22) Ferna´ndez, E.; Maeda, K.; Hooper, M. W.; Brown, J. M. Chem.sEur. J.
2000, 6, 1840.
(23) Fleming, I.; Sanderson, P. E. J. Tetrahedron Lett. 1987, 28, 4229.
(24) Tietze, L. F.; To¨lle, N.; Kratzert, D.; Stalke, D. Org. Lett. 2009, 11, 5230.
JA910989N
9
2900 J. AM. CHEM. SOC. VOL. 132, NO. 9, 2010