1174
C. A. Correia, C.-J. Li / Tetrahedron Letters 51 (2010) 1172–1175
Pfeffer, M.. Chem. Rev. 2002, 102, 1731; (d) Dyker, G. Handbook of C–H
O2
Transformations; Wiley-VCH: Weinheim, 2005; (e) Godula, K.; Sames, D. Science
2006, 312, 76; (f) Yu, J.-Q.; Giri, R.; Chen, X. Org. Biomol. Chem. 2006, 4, 4041; (g)
Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174; (h) Herrerias,
C.; Yao, X.; Li, Z.; Li, C.-J. Chem. Rev. 2007, 107, 2546; (i) Li, C.-J. Acc. Chem. Res.
2009, 42, 335.
NHPI
PINO
O
OH
O2
O2
Ph
Ph
Ph Ph
2. For recent example see: (a) intramolecular reactions: (i) Watanabe, T.
Oishi, T. S.; Fujii, S. N.; Ohno, H. Org. Lett. 2008, 10, 1759; (ii) Zhang, C.; Zhao,
Y.; Li, B.; Song, H.; Xu, S.; Wang, B. Dalton Trans. 2009, 26, 5182; (iii) Xu, K.; Li,
B.; Xu, S.; Song, H.; Wang, B. Organometallics 2009, 28, 4438; (b) Examples of C–
H bonds near nitrogen: (i) Zhao, L.; Basle, O.; Li, C.-J. PNAS 2009, 106, 4106; (ii)
Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2006, 128, 56; (iii) Li, C.-J.; Li, Z. Pure Appl. Chem.
2006, 78, 935; (iv) Zhang, Y.; Li, C.-J. J. Am. Chem. Soc. 2006, 128, 4242; (c) For
recent examples of alkane functionalization: (i) Deng, G.; Chen, W.; Li, C.-J. Adv.
Synth. Catal. 2009, 351, 353; (ii) Deng, G.; Li, C.-J. Org. Lett. 2009, 11, 1171; (iii)
Deng, G.; Zhao, L.; Li, C.-J. Angew. Chem., Int. Ed. 2008, 47, 6278; (d) Examples of
sp3 C–H activation by Ru and Rh: (i) Zhang, S.-Y.; Tu, Y.-Q.; Fan, C.-A.; Jiang, Y.-
J.; Shi, L.; Cao, K.; Zhang, E. Chem. Eur. J. 2008, 14, 10201; (ii) Pastine, S. J.;
Gribkov, D. V.; Sames, D. J. Am. Chem. Soc. 2006, 128, 14220; (iii) Shi, L.; Tu, Y.-
Q.; Wang, M.; Zhang, F.-M.; Fan, C.-A.; Zhao, Y.-M.; Xia, W.-J. J. Am. Chem. Soc.
2005, 127, 10836.
Ph Ph
Ph Ph
1a
[Cu]
4
5
6
path a
path b
FeIII
O
[Fe]
O
O
O
Ph
OEt
Ph
OEt
7
2a
O
O
Ph
OEt
3. For examples of metal catalyzed alkylation of benzylic C–H bonds, see: (a)
Yasuda, M.; Somyo, T.; Baba, A. Angew. Chem., Int. Ed. 2006, 45, 793; (b) Kischel,
J.; Mertins, K.; Michalik, D.; Zapf, A.; Beller, M. Adv. Synth. Catal. 2007, 349, 865;
(c) Babu, S. A.; Yasuda, M.; Tsukahara, Y.; Yamauchi, T.; Wada, Y.; Baba, A.
Synthesis 2008, 1717; (d) Yuan, Y.; Shi, Z.; Feng, X.; Liu, X. Appl. Organomet.
Chem. 2007, 21, 958; (e) Jana, U.; Biswas, S.; Maiti, S. Tetrahedron Lett. 2007, 48,
4065.
4. For recent examples of Bronsted acid catalyzed alkylation of benzylic C–H
bonds see: (a) Sanz, R.; Miguel, D.; Martinez, A.; Alvarez-Gutierrez, J. M.;
Rodriguez, F. Org. Lett. 2007, 9, 2027; (b) Yadav, J. S.; Subba Reddy, B. V.;
Pandurangam, T.; Raghavendra Rao, K. V.; Praneeth, K.; Narayana Kumar, G. G.
K. S.; Madavi, C.; Kunwar, A. C. Tetrahedron Lett. 2008, 49, 4296.
Ph Ph
3a
Scheme 1. Proposed reaction pathways.
20 mol% NHPI,
5mol% FeCl2, 5 mol% CuCl
O
O
OH
Ph Ph
O
O
+
Ph
OEt
Ph
OEt
105oC, O2,
Ph Ph
[90%]
5. (a) Li, Z.; Cao, L.; Li, C.-J. Angew. Chem., Int. Ed. 2007, 46, 6505; (b) Borduas, N.;
Powell, D. A. J. Org. Chem. 2008, 73, 7822.
Scheme 2. Reaction of benzhydrol with ethyl benzoyl acetate.
6. (a) Murahashi, S.-I.; Komiya, N.; Terai, H.; Nakae, T. J. Am. Chem. Soc. 2003, 125,
15312–15313; (b) Basle, O.; Li, C.-J. Green Chem. 2007, 9, 1047; (c) Basle, O.; Li,
C.-J. Org. Lett. 2008, 10, 3661; (d) Murahashi, S.-I.; Nakae, T.; Terai, H.; Komiya,
N. J. Am. Chem. Soc. 2008, 130, 11005; (e) Shen, Y.; Li, M.; Wang, S.; Zhan, T.;
Tan, Z.; Guo, C. C. Chem. Commun. 2009, 953; (f) Singhal, S.; Jain, S.; Suman, L.;
Sain, B. Chem. Commun. 2009, 2371.
ditions and found that the reaction gave the C–C coupling product in
90% (NMR yield). Furthermore, this reaction also gives the product in
83% NMR yield when run in the absence of NHPI and under nitrogen,
both of which supports path b.13
In summary, we have developed an efficient method for the
construction of new C–C bonds through the alkylation of benzylic
C–H bonds with 1,3-dicarbonyl compounds. Furthermore, with
the addition of catalytic amounts of FeCl2, CuCl, and NHPI we were
able to utilize oxygen as the terminal oxidant. Further investiga-
tion into the mechanism, scope, and application of this chemistry
is in progress.
7. Yoo, W.-J.; Correia, C. A.; Zhang, Y.; Li, C.-J. Synlett 2009, 138.
8. For reviews, see: (a) Ishii, Y.; Sakaguchi, S.; Iwahama, T. Adv. Synth. Catal. 2001,
343, 393; (b) Sheldon, R. A.; Arends, I. W. C. E. Adv. Synth. Catal. 2004, 346, 1051;
(c) Recupero, F.; Punta, C. Chem. Rev. 2007, 107, 3800; (d) Galli, C.; Gentili, P.;
Lanzalunga, O. Angew. Chem., Int. Ed. 2008, 47, 4790.
9. For the oxidation of C–H bonds using NHPI in oxygen, see: (a) Ishii, Y.;
Nakayama, K.; Takeno, M.; Sakaguchi, S.; Iwahama, T.; Nishiyama, Y. J. Org.
Chem. 1995, 60, 3934; (b) Ishii, Y.; Iwahama, T.; Sakaguchi, S.; Nakayama, K.;
Nishiyama, Y. J. Org. Chem. 1996, 61, 4520; (c) Kato, S.; Iwahama, T.; Sakaguchi,
S.; Ishii, Y. J. Org. Chem. 1998, 63, 222; (d) Sakaguchi, S.; Nishiwaki, Y.;
Kitamura, T.; Ishii, Y. Angew. Chem., Int. Ed. 2001, 40, 222; (e) Hara, T.; Iwahama,
T.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 2001, 66, 6425; (f) Hirabayashi, T.;
Sakaguchi, S.; Ishii, Y. Angew. Chem., Int. Ed. 2004, 43, 1120; (g) Sheldon, R. A.;
Arends, I. W. C. E. J. Mol. Catal. A: Chem. 2006, 251, 200; (h) Amorati, R.; Lucarini,
M.; Mugnaini, V.; Pedulli, G. F.; Minisci, F.; Recupero, F.; Fontana, F.; Astolfi, P.;
Greci, L. J. Org. Chem. 2003, 68, 1747.
Procedural information: 2-benzyl anisole 1c and 4-benzyl ani-
sole 1d were synthesized according to earlier methods.5a Com-
pounds 3a–3c, 3g, and 3i–3l are known compounds and their 1H
NMR and 13C NMR spectra corresponded to the literature.5a,3d 1a
10. (a) Rueping, M.; Nachtsheim, B. J.; Kuenkel, A. Org. Lett. 2007, 9, 825; (b)
Rueping, M.; Nachtsheim, B. J.; Ieawsuwan, W. Adv. Synth. Catal. 2006, 348,
1033; Noji, M.; Konno, Y.; Ishii, K. J. Org. Chem. 2007, 72, 5161.
(1.0 mmol, 0.17 mL) and 2a (0.2 mmol, 35 lL) were placed in a
sealable tube with a magnetic stir bar, to this CuCl (5 mol %,
1.0 mg), FeCl2 (5 mol %, 1.3 mg) and NHPI (20 mol %, 6.5 mg) were
added. The tube was flushed with oxygen and a balloon of oxygen
was attached, after which it was placed in an oil bath at 105 °C
overnight. The mixture was allowed to cool then flushed through
a short column of silica gel in a pasture pipette with ethyl acetate
and, after rotary evaporation, the compound was isolated by flash
column chromatography on silica gel (hexane/ethyl acetate 5:1,
Rf = 0.4). Off-white solid 3a was obtained (56.3 mg, 79%).14
11. Jones, C. W. Application of Hydrogen Peroxide and Derivatives; The Royal Society
of Chemistry: Cambridge, 1999.
12. Lee, J. M.; Park, E. J.; Cho, S. H.; Chang, S. J. Am. Chem. Soc. 2008, 130, 7824.
13. The production of 3a in the absence of oxygen and NHPI suggest
a
diphenylmethane carbocation intermediate and subsequent attack by the
iron enolate. This carbocation formation could be assisted by the Lewis acids in
the mixture.
14. (a) Characterization of unknown compounds: Ethyl 2-(4-methylbenzoyl)-3,3-
diphenylpropanoate (3d): Mp 148.5–151.8 °C; 1H NMR (500 MHz, CDCl3, ppm) d
7.95 (d, J = 8.3 Hz, 2H), 7.39 (d, J = 7.3 Hz, 2H), 7.31–7.21 (m, 6H), 7.20–7.15 (m,
3H), 7.07 (t, J = 7.3 Hz, 1H), 5.41 (d, J = 11.8 Hz, 1H), 5.10 (d, J = 11.7 Hz, 1H),
3.98–3.87 (m, 2H), 2.41 (s, 3H), 0.94 (t, J = 7.3 Hz, 3H); 13C NMR (125 MHz,
CDCl3, ppm) d 192.2, 167.9, 144.6, 141.8, 134.1, 129.4, 128.9, 128.6, 128.5,
128.3, 127.7, 126.8, 126.5, 61.5, 59.2, 50.8, 21.7, 12.7; HRMS (ESI): m/z:
[M+Na]+ calcd for C25H24O3Na: 395.1623; found: 395.1614. Ethyl 3,3-diphenyl-
2-(4-(trifluoromethyl)benzoyl)propanoate (3e): Mp 118.0–120.2 °C; 1H NMR
(500 MHz, CDCl3, ppm) d 8.11 (d, J = 8.4 Hz, 2H), 7.71 (d, J = 8.3 Hz, 2H), 7.40 (d,
J = 7.5 Hz, 2H), 7.31 (t, J = 7.4 Hz, 2H), 7.27–7.16 (m, 5H), 7.1–7.07 (t, J = 7.4 Hz,
1H), 5.42 (d, J = 11.8 Hz, 1H), 5.09 (d, J = 11.8 Hz, 1H), 3.99–3.92 (m, 2H), 0.96 (t,
J = 7.4 Hz, 3H); 13C NMR (125 MHz, CDCl3, ppm) d 192.3, 167.3, 141.4, 141.3,
139.2, 134.9, 134.6, 129.0, 128.7, 128.6, 128.1, 127.7, 127.0, 126.8, 125.8, 125.8,
125.7, 125.7, 61.9, 59.9, 50.9, 13.7; HRMS (ESI): m/z: [M+Na]+ calcd for
C25H21O3F3Na: 449.1340; found: 449.1332. 2-Benzhydryl-1,3-bis(4-methoxy-
phenyl)- propane-1,3-dione (3f): Mp 182.0–183.5 °C; 1H NMR (500 MHz, CDCl3,
ppm) d 7.88 (d, J = 8.8 Hz, 4H), 7.26 (d, J = 7.6 Hz, 4H), 7.16 (t, J = 7.6 Hz, 4H),
7.06 (t, J = 7.4 Hz, 2H), 6.82 (d, J = 9 Hz, 4H), 6.22 (d, J = 11.5 Hz, 1H), 5.33 (d,
Acknowledgments
We thank the Canada Research Chair (Tier 1) foundation (to CJL)
and NSERC for their support to this research. C.A.C. would also like
to thank McGill University for post-graduate fellowships (Bill and
Christina Chan Fellowship and Principle’s Graduate Fellowship).
References and notes
1. For recent reviews, see: (a) Bergman, R. G. Nature 2007, 446, 391; (b) Jia, C.;
Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633; (c) Ritleng, V.; Sirlin, C.;