pubs.acs.org/joc
A selective, stable, and nondestructive immobilization of
Double Selective Synthetic Approach to the
N-Functionalized 1,4,7-Triazacyclononane
Derivatives: Chelating Compounds for Controllable
Protein Orientation
proteins on surfaces in a sterically defined form8 is a pre-
requisite for the investigation of molecular interactions.
Currently, the predominant strategy for spatially oriented
immobilization of proteins is based on specific interaction
between a metal chelator, usually nitrilotriacetic acid (NTA)
functionalized SAMs, and histidine-tagged proteins.3 NTA
are very frequently employed for His-tag protein purifica-
tion.9a More than 60% of the proteins produced for struc-
tural studies include His6-tag9b and can be directly used for
selective and oriented binding to chelator-functionalized
surfaces. However, complexes between His-tag and NTA-
Ni2þ are of very low affinity (Kd values in the 1-10 μM
range).10 SAMs presenting the Multivalent Chelators based
on NTA were prepared with increased stability of the
chelator-His-tag complexes.11 The chips based on SAMs
that present “tacn” ligand offer a major advantage over
current NTA-based chelator systems, i.e., the triazamacro-
cyclic ligand forms stable (nondissociable) complexes with a
Ni ion and forms stable complexes with His-tagged pro-
teins.12 The protein binding selectivity also has been exam-
ined with the “tacn”-modified sorbent.13
“Tacn” chelators also have been used for an affinity-
capturing system of His-tagged proteins in SAMDI experi-
ment14 on SAMs prepared from maleimide-terminated
OEG-alkyl disulfides. These SAMs were incubated with
thiol-terminated “tacn” after formation of a monolayer.
However, SAMs have more often been formed from OEG-
alkanethiols than from unsymmetrical disulfides. The latter
are known for reduced kinetics of chemisorption on gold.15
SAMs with reactive carboxyls, often in “active ester” form,
are the most widely used for coupling with desired ligands.16
Formation of an amide bond mediated by NHS/EDC is
simple but suffers from sensitivity of the transiently formed
active NHS esters to hydrolysis,17 which complicates appli-
cation of this method, especially in microspotting. Hence,
ꢀ
Tomasz D. Sobiesciak* and Piotr Zielenkiewicz
Institute of Biochemistry and Biophysics, Polish Academy of
Sciences, Pawinꢀskiego 5a, Warsaw 02-106, Poland
Received November 24, 2009
The double selective synthetic approach is proposed for
easy preparation of asymmetrically N-substituted deri-
vatives of 1,4,7-triazacyclononane (tacn, [9]aneN3) with
the same or different pendant arms. The synthetic routes
simplify the synthesis of “tacn” ligands for functionaliza-
tion of other carboxy terminated molecules/supports and
also facilitate access to azamacrocycle functionalized self-
assembled monolayer (SAMs) or nanopatterns for spe-
cific and stable Histidine-tagged protein immobilization.
The analysis of protein complexes and protein-protein
interactions is currently a subject of great interest.1 Studies of
these interactions often require ligands which are linked to
biocompatible surfaces and specifically and selectively inter-
act with biomolecules.2 Protein interactions can be detected
by SPR measurement on biochips3 that are prepared from
SAM on gold,4 and by the method that combines SAMs with
MALDI-TOF-MS (also called as SAMDI).5 Oligo(ethylene
glycol)-terminated6 SAMs are inert in nonspecific interac-
tions with proteins.7
(8) (a) Gamsjaeger, R.; Wimmer, B.; Kahr, H.; Tinazli, A.; Picuric, S.;
ꢀ
Lata, S.; Tampe, R.; Maulet, Y.; Gruber, H. J.; Hinterdorfer, P.; Romanin,
C. Langmuir 2004, 20, 5885–5890. (b) Merkel, J. S.; Michaud, G. A.; Salcius,
M.; Schweitzer, B.; Predki, P. F. Curr. Opin. Biotechnol. 2005, 16, 447–452.
(c) Cha, T.; Guo, A.; Zhu, X.-Y. Proteomics 2005, 5, 416–419.
€
€
(9) (a) Crowe, J.; Dobeli, H.; Gentz, R.; Hochuli, E.; Stuber, D.; Henco,
K. Methods Mol. Biol. 1994, 31, 371–387. (b) Derewenda, Z. S. Methods
2004, 34, 354–363.
€
€ €
(10) (a) Nieba, L.; Nieba-Axmann, S. E.; Persson, A.; Hamalainen, M.;
Edebratt, F.; Hansson, A.; Lidholm, J.; Magnusson, K.; Karlsson, A. F.;
€
Pluckthun, A. Anal. Biochem. 1997, 252, 217–228. (b) Lata, S.; Reichel, A.;
(1) (a) Monti, M.; Cozzolino, M.; Cozzolino, F.; Vitiello, G.; Tedesco, R.;
Flagiello, A.; Pucci, P. Expert Rev. Proteomics 2009, 6, 159–169. (b) Fuentes,
G.; Oyarzabal, J.; Rojas, A. M. Curr. Opin. Drug Discovery Dev. 2009, 12,
358–366. (c) Piehler, J. Curr. Opin. Struct. Biol. 2005, 15, 4–14. (d) Lee, H. J.;
Yan, Y.; Marriott, G.; Corn, R. M. J. Physiol. 2005, 563, 61–71.
(2) Rusmini, F.; Zhong, Z.; Feijen, J. Biomacromolecules 2007, 8, 1775–
1789.
ꢀ
Brock, R.; Tampe, R.; Piehler, J. J. Am. Chem. Soc. 2005, 127, 10205–10215.
(11) Valiokas, R.; Klenkar, G.; Tinazli, A.; Reichel, A.; Tampe, R.;
Piehler, J.; Liedberg, B. Langmuir 2008, 24, 4959–4967.
(12) Johnson, D. L.; Martin, L. L. J. Am. Chem. Soc. 2005, 127, 2018–
2019.
(13) Jiang, W.; Prescott, M.; Devenish, R. J.; Spiccia, L.; Hearn, M. T. W.
Biotechnol. Bioeng. 2009, 103, 747–756.
(14) Marin, V. L.; Bayburt, T. H.; Sligar, S. G.; Mrksich, M. Angew.
Chem., Int. Ed. 2007, 46, 8796–8798.
(15) Bain, C. D.; Biebuyck, H. A.; Whitesides, G. M. Langmuir 1989, 5,
723–727.
(16) (a) Wagner, P.; Hegner, M.; Kernen, P.; Zaugg, F.; Semenza, G.
Biophys. J. 1996, 70, 2052–2066. (b) Laurent, N.; Voglmeir, J.; Wright, A.;
Blackburn, J.; Pham, N. T.; Wong, S. C. C.; Gaskell, S. J.; Flitsch, S. L.
ChemBioChem 2008, 9, 883–887.
(17) Tournier, E. J. M.; Wallach, J.; Blond, P. Anal. Chim. Acta 1998, 361,
33–44.
(3) Sigal, G. B.; Bamdad, C.; Barberis, A.; Strominger, J.; Whitesides,
G. M. Anal. Chem. 1996, 68, 490–497.
(4) (a) Ulman, A. Chem. Rev. 1996, 96, 1533–1554. (b) Senaratne, W.;
Andruzzi, L.; Ober, C. K. Biomacromolecules 2005, 6, 2427–2448.
(5) (a) Yeo, W.-S.; Min, D.-H.; Hsieh, R. W.; Greene, G. L.; Mrksich, M.
Angew. Chem., Int. Ed. 2005, 44, 5480–5483. (b) Fukuzawa, S.; Asanuma,
M.; Tachibana, K.; Hirota, H. J. Mass. Spectrom. Soc. Jpn. 2006, 54, 187–
193.
(6) Oligo(ethylene glycol) (OEG) is also referred to as oligo(oxyethylene),
oligo(ethylene oxide).
(7) Prime, K. L.; Whitesides, G. M. Science 1991, 252, 1164–1167.
DOI: 10.1021/jo902504d
r
Published on Web 02/25/2010
J. Org. Chem. 2010, 75, 2069–2072 2069
2010 American Chemical Society