pubs.acs.org/joc
reported mainly following lateral and ortho-lithiations along
Synthesis of Chiral 3-Alkyl-3,4-dihydroisocoumarins
by Dynamic Kinetic Resolutions Catalyzed by a
Baeyer-Villiger Monooxygenase
with other strategies.2 Other recent syntheses include the
alkylation of 1,2-oxiranes followed by oxidative degrada-
tion,3 the reaction of benzocyclobutenoxides with alde-
hydes,4 domino [3 þ 3] cyclation/lactonization processes,5
the CuBr-catalyzed reaction of o-methoxycarbonylbenzene-
diazonium bromides with unsaturated compounds,6 and the
Ir-catalyzed cyclation of ketoaldehydes.7 All these methodo-
logies suffer from some drawbacks such as harsh reaction
conditions, multistep procedures, and low yields due to
functional group intolerance.
Today, enzymes are recognized as efficient catalysts for the
preparation of chiral compounds.8 A clear example of the
increasing interest in biocatalysis is the Baeyer-Villiger reaction,
a key process for the synthesis of esters and lactones.9 In the past
few years, enzymatic methodologies employing Baeyer-Villiger
monooxygenases (BVMOs) have been demonstrated to be a
very useful tool to perform selective Baeyer-Villiger oxida-
tions.10 BVMOs are flavoproteins that are able to catalyze the
oxidation of carbonylic and heteroatom-containing compounds
employing atmospheric oxygen as oxidant.11 Recent examples
of these biocatalysts are 4-hydroxyacetophenone monooxygen-
ase (HAPMO) from Pseudomonas fluorescens ACB12 and a
single mutant of the thermostable phenylacetone monooxygen-
ase (M446G PAMO) from Thermobifida fusca.13 This designed
mutant has been shown to have a different substrate profile and
selectivity when compared with the wild type (wt) enzyme.
Asymmetric BVMO-catalyzed oxidations have been deve-
loped by desymetrization of prochiral ketones or by kinetic
resolution of racemic ones. Strategies to increase the theoretical
yield of kinetic resolutions are of great importance. Thus, by
combining an in situ racemization of substrate with an enzy-
matic resolution, a dynamic kinetic resolution (DKR) can
Ana Rioz-Martınez,† Gonzalo de Gonzalo,†
‡
Daniel E. Torres Pazmino, Marco W. Fraaije, and
‡
~
Vicente Gotor*,†
†
´
ꢀ
ꢀ
Departamento de Quımica Organica e Inorganica,
´
Instituto de Biotecnologıa de Asturias, Universidad de Oviedo,
‡
ꢀ
´
Julian Claverıa 8, 33006, Oviedo, Spain, and Laboratory of
Biochemistry, Groningen Biomolecular Sciences and
Biotechnology Institute, University of Groningen,
Nijenborgh 4, 9747 AG Groningen, The Netherlands
Received November 26, 2009
Baeyer-Villiger monooxygenases have been tested in the
oxidation of racemic benzofused ketones. When employ-
ing a single mutant of phenylacetone monooxygenase
(M446G PAMO) under the proper reaction conditions,
it was possible to achieve 3-substituted 3,4-dihydroiso-
coumarins with high yields and optical purities through
regioselective dynamic kinetic resolution processes.
(3) Habel, A.; Boland, W. Org. Biomol. Chem. 2008, 6, 1601.
(4) Fitzgerald, J. J.; Pagano, A. R.; Sakoda, V. M.; Olofson, R. A. J. Org.
Chem. 1994, 59, 4117.
(5) Sher, M.; Ali, A.; Reinke, H.; Langer, P. Tetrahedron Lett. 2008, 49,
5400.
(6) Obushak, M. D.; Matiychuk, V. S.; Turytsya, V. V. Tetrahedron Lett.
2009, 50, 6112.
(7) Suzuki, T.; Yamada, T.; Watanabe, K.; Katoh, T. Bioorg. Med. Chem.
Lett. 2005, 15, 2583.
(8) (a) Matsuda, T.; Yamanaka, R.; Nakamura, K. Tetrahedron: Asym-
metry 2009, 20, 513. (b) Gotor, V.; Alfonso, I.; García-Urdiales, E. Asymmetric
Organic Synthesis with Enzymes, 1st ed.; Wiley-VCH: Weinheim, 2008. (c)
Woodley, J. M. Trends Biotechnol. 2008, 26, 321.
(9) (a) Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Chem. Rev. 2005, 105,
2329. (b) Ten Brink, G. J.; Arends, I. W.; Sheldon, R. A. Chem. Rev. 2004,
104, 4105. (c) Renz, M.; Meunier, B. Eur. J. Org. Chem. 1999, 737.
(10) For recent reviews, see: (a) Kayser, M. M. Tetrahedron 2009, 65, 947.
3,4-Dihydroisocoumarins and their derivatives are com-
pounds that widely exist in nature as key intermediates in the
synthesis of biologically active molecules. As these com-
pounds are known to have interesting activities (e.g., anti-
fungal, antiallergenic, antiulcer, and antimalarial), they are
regarded as highly attractive molecules in organic chemis-
try.1 To date, several synthetic routes for these derivatives
have been described. A number of methods have been
~
(b) Torres Pazmino, D. E.; Fraaije, M. W. In Future Directions in Biocatalysis;
Matsuda, T., Ed.; Elsevier: Dordrecht, 2007; p 107. (c) Mihovilovic, M. D. Curr.
Org. Chem. 2006, 10, 1265.
(11) (a) Szolkowy, C.; Eltis, L. D.; Bruce, N. L.; Grogan, G. ChemBio-
Chem 2009, 10, 1208. (b) Snajdrova, R.; Braun, I.; Bach, T.; Mereiter, K.;
Mihovilovic, M. D. J. Org. Chem. 2007, 72, 9597. (c) Clouthier, C. M.;
Kayser, M. M.; Reetz, M. T. J. Org. Chem. 2006, 71, 8431. (d) Mihovilovic,
M. D.; Rudroff, F.; Winniger, A.; Schneider, T.; Schulz, F.; Reetz, M. T. Org.
Lett. 2006, 8, 1221.
(1) (a) Jiao, P.; Gloer, J. B.; Campbell, J.; Shearer, C. A. J. Nat. Prod.
2006, 69, 612. (b) Zidorn, C.; Lohwasser, U.; Pschorr, S.; Salvenmoser, D.;
€
Ongania, K.-H.; Ellmerer, E. P.; Borner, A.; Stuppner, H. Phytochemistry
~
2005, 66, 1691. (c) Umehara, K.; Matsumoto, M.; Nakamura, M.; Miyase,
T.; Kuroyanagi, M.; Noguchi, H. Chem. Pharm. Bull. 2000, 48, 566.
(2) (a) Mandal, S. M.; Roy, S. C. Tetrahedron Lett. 2007, 48, 4131. (b)
Uchida, K.; Fukuda, T.; Iwao, M. Tetrahedron 2007, 63, 7178. (c) Kurosaki,
Y.; Fukuda, T.; Iwao, M. Tetrahedron 2005, 61, 3289. (d) Superchi, S.;
Minutolo, F.; Pini, D.; Salvadori, P. J. Org. Chem. 1996, 61, 3183.
(12) (a) de Gonzalo, G.; Torres Pazmino, D. E.; Ottolina, G.; Fraaije, M.
W.; Carrea, G. Tetrahedron: Asymmetry 2006, 17, 130. (b) Kamerbeek, N.
M.; Olsthoorn, A. J. J.; Fraaije, M. W.; Janssen, D. B. Appl. Environ.
Microbiol. 2003, 69, 419.
(13) Torres Pazmino, D. E.; Snajdrova, R.; Rial, D. V.; Mihovilovic, M.
D.; Fraaije, M. D. Adv. Synth. Catal. 2007, 349, 1361.
~
DOI: 10.1021/jo902519j
r
Published on Web 02/18/2010
J. Org. Chem. 2010, 75, 2073–2076 2073
2010 American Chemical Society