1458
N.W. Smith et al. / Biochemical and Biophysical Research Communications 391 (2010) 1455–1458
[8] R. Eisert, L. Felau, L.R. Brown, Methods for enhancing the accuracy and
reproducibility of Congo red and thioflavin T assays, Anal. Biochem. 353 (2006)
144–146.
[9] A. Loudet, K. Burgess, BODIPY dyes and their derivatives: synthesis and
spectroscopic properties, Chem. Rev. 107 (2007) 4891–4932.
oligomers. Triazole-containing BODIPY dyes could serve as suitable
in vitro probes for monitoring conformational transitions of amy-
loid species.
[10] G. Ulrich, R. Ziessel, A. Harriman, The chemistry of fluorescent Bodipy dyes:
versatility unsurpassed, Angew. Chem. Int. Ed. 47 (2008) 1184–1201.
[11] K. Parhi, M.-P. Kung, K. Ploessl, H.F. Kung, Synthesis of fluorescent probes
based on stilbenes and diphenylacetylenes targeting b-amyloid plaques,
Tetrahedron Lett. 49 (2008) 3395–3399.
[12] A. Ojida, T. Sakamoto, M.-a. Inoue, S.-h. Fujishima, G. Lippens, I. Hamachi,
Fluorescent BODIPY-based Zn(II) complex as a molecular probe for selective
detection of neurofibrillary tangles in the brains of Alzheimer’s disease
patients, J. Am. Chem. Soc. 131 (2009) 6543–6548.
Acknowledgments
This work was supported in part by the Donors of the Petroleum
Research Fund (administered by the American Chemical Society,
47965-G7) and TCU (RCAF 60486 and TCU-JFSR award to S.V.D.).
We would like to thank Prof. D.E. Minter for assistance with acquir-
ing NOE spectra. A.A. is a McNair scholar. N.W.S. acknowledges the
ACS Division of Medicinal Chemistry for a predoctoral fellowship
sponsored by Wyeth.
[13] N.W. Smith, O. Annunziata, S.V. Dzyuba, Amphotericin B interactions with
soluble oligomers of amyloid Ab1–42 peptide, Bioorg. Med. Chem. 17 (2009)
2366–2370.
[14] M. Bartolini, C. Bertucci, M.L. Bolognesi, A. Cavalli, C. Melchiorre, V. Andrisano,
Insight into the kinetic of amyloid
elucidation of inhibitors’ mechanism of action, Chembiochem
2152–2161.
b (1–42) peptide self-aggregation:
Appendix A. Supplementary data
8 (2007)
[15] M. Meldal, W. Christian, Cu-catalyzed azide–alkyne cycloaddition, Chem. Rev.
108 (2008) 2952–3015.
[16] M.D. Best, Click chemistry and bioorthogonal reactions: unprecedented
selectivity in the labelling of biological molecules, Biochemistry 48 (2009)
6571–6584.
[17] L. Li, J. Han, B. Nguyen, K. Burgess, Syntheses and spectral properties of
functionalized, water-soluble BODIPY derivatives, J. Org. Chem. 73 (2008)
1963–1970.
[18] C. Fischer, B. Munoz, S. Zultanski, J. Methot, H. Zhou, W.C. Brown, Preparation
of triazole derivatives for treating Alzheimer’s disease and related conditions,
PCT Int. Appl., 2008, WO 2008156580 A1 20081224.
[19] T. Kimura, K. Kawano, E. Doi, N. Kitazawa, T. Miyagawa, N. Sato, T. Kaneko, K.
Shin, K. Ito, M. Takaishi, T. Sasaki, H. Hagiwara, Preparation of heterocyclic
type cinnamide compounds for inhibiting amyloid-b production, PCT Int.
Appl., 2007, WO 2007135970 A1 20071129.
[20] S. Bowers, A.W. Garofalo, R.K. Hom, A.W. Konradi, M.N. Mattson, M.L. Neitzel,
C.M. Semko, A.P. Truong, J. Wu, Y.-Z. Xu, Preparation of bridged N-cyclic
sulfonamide compounds as inhibitors of gamma secretase. PCT Int. Appl.,
2007, WO 2007022502 A2 20070222.
[21] H.C. Kolb, K.B. Sharpless, The growing impact of triazole-containing chemistry
on drug discovery, Drug Discov. Today 8 (2003) 1128–1137.
[22] W.S. Horne, C.D. Stout, M.R. Ghadiri, A heterocyclic peptide nanotube, J. Am.
Chem. Soc. 125 (2003) 9372–9376.
[23] V.D. Bock, R. Perciaccante, T.P. Jansen, H. Hiemstra, J.H. van Maarseveen,
Triazole-containing chemistry as a route to cyclic tetrapeptide analogues:
Supplementary data associated with this article can be found, in
References
[1] C. Haass, D.J. Selkoe, Soluble protein oligomers in neurodegeneration: lessons
from the Alzheimer’s amyloid b-peptide, Nat. Rev. Mol. Cell Biol. 8 (2007) 101–
112.
[2] D.M. Walsh, I. Klyubin, J.V. Fadeeva, W.K. Cullen, R. Anwyl, M.S. Wolfe, M.J.
Rowan, D.J. Selkoe, Naturally secreted oligomers of amyloid
b protein
potentially inhibit hippocampal long-term potentiation in vivo, Nature 416
(2002) 535–539.
[3] J.P. Cleary, D.M. Walsh, J. Hofmeister, G.M. Shankar, M.A. Kuskowski, D.J.
Selkoe, K.H. Ashe, Natural oligomers of the amyloid-b protein specifically
disrupt cognitive function, Nat. Neurosci. 8 (2005) 79–84.
[4] A. Frydman-Maron, M. Rechter, I. Shefler, Y. Bram, D.W. Shalev, E. Gazit,
Cognitive-performance recovery of Alzheimer’s disease model mice by
modulation of early soluble amyloidal assemblies, Angew. Chem. Int. Ed. 48
(2009) 1981–1986.
[5] A. Hawe, M. Sutter, W. Jiskoot, Extrinsic fluorescent dyes as tools for protein
characterization, Pharm. Res. 25 (2008) 1487–1499.
[6] S.R. Leliveld, C. Korth, The use of conformation-specific ligands and assays to
dissect the molecular mechanisms of neurodegenerative diseases, J. Neurosci.
Res. 85 (2007) 2285–2297.
synthesis of cylco-[Pro-Val-
W(triazole)-Pro-Tyr], Org. Lett. 8 (2006) 919–
922.
[7] M.R. Nillson, Techniques to study amyloid fibril formation in vitro, Methods 34
(2004) 151–160.