corresponding ꢀ-amino alcohols 2-6 using a modification
of literature conditions6 (Scheme 1). In the first instance, a
reductive amination process involving a variety of 2-bro-
mobenzaldehyde derivatives 7-10 and an array of (enan-
tio)pure amino alcohols 2-6 delivered a high yield of the
bromobenzylated amino alcohols 11a-f. Subsequent treat-
ment with thionyl chloride proceeded smoothly to afford the
cyclic sulfamidites 12a-f in very satisfactory yield. In most
cases, these preliminary annulated compounds were obtained
as diastereoisomeric mixtures, but stereochemical consider-
ations at this stage were not crucial since conversion into
the achiral dioxides 1 was envisaged in the sequel. The
literature protocols for the oxidation into the desired sulfa-
midates using catalytic RuCl3 with NaIO4 as reoxidant clearly
indicate that the chemoselectivity of the oxidation step can
be tailored via judicious choice of the reaction solvent.3d We
observed that efficiency of this process was slightly better
in biphasic media (H2O-ethyl acetate; e.g., 87% for 1a)3a,7
than in the more commonly used H2O-MeCN solvent
system (e.g., 78% for 1a) presumably due to competing
oxidation of the polyalkoxylated bromobenzyl substituent,
a precedented phenomenom.3d These operation are known
to spare the stereochemistry at the carbon centers embedded
in the sulfamidate framework and allowed for the assembly
of the constitutionally diverse models 1a-f, candidates for
the planned Parham-type cyclization process.
Figure 1. Sites for inter- and/or intranucleophilic attacks.
lecular N-S(O2)-O bridge scission (Figure 1a) could be
forced and strongly favored over well-established intermo-
lecular nucleophilic displacement at the carbon center
neighboring the oxygen atom (Figure 1b), the latter process
being highly unlikely in the intramolecular version (Figure
1c). This unexpected and unusual ring-opening/ring-closing
reaction sequence would notably enrich the repertoire of the
Parham-type anionic cyclization process5 and would also
provide the basis of a flexible entry to a range of new
heterocyclic scaffolds.
We then embarked on the synthesis of a structurally
representative set of cyclic sulfamidates 1a-f. These com-
pounds were readily and efficiently synthesized from the
The protocol developed by Parham which cursorily hinges
upon aromatic lithiation and subsequent capture with an
internal electrophile occupies a place of choice in the arsenal
of synthetic tactics for the elaboration of carbo- and
heterocyclic systems,5 but applications of this concept to
build up five-membered heterocyclic systems are rather
scarce.8 To ensure the optimal formation of the mandatory
lithiated species, variation of the ethereal solvent (THF or
Et2O), base (n-BuLi or t-BuLi), temperature profile (-90,
-78, 0 °C, rt), course of the addition process (normal or
reverse), and inclusion of anion modifiers (TMEDA, crown-
ether) were all screened in order to facilitate halogen/metal
(1) (a) Mele´ndez, R. E.; Lubell, W. D. Tetrahedron 2003, 59, 2581–
2616. (b) Nicolaou, K. C.; Snyder, S. A.; Longbottom, D. A.; Nalbandian,
A. Z.; Huang, X. Chem.sEur. J. 2004, 10, 55815606. (c) Nicolaou, K. C.;
Huang, X.; Snyder, S. A.; Rao, P. B.; Bella, M.; Reddy, M. V. Angew.
Chem., Int. Ed. 2002, 41, 834–838. (d) Bower, J. F.; Svenda, J.; Williams,
A. J.; Charmant, J. P. H.; Lawrence, R. M.; Szeto, P.; Gallagher, T. Org.
Lett. 2004, 6, 4727–4730. (e) Williams, A. J.; Chakthong, S.; Gray, D.;
Lawrence, R. M.; Gallagher, T. Org. Lett. 2003, 5, 811–814. (f) Posakony,
J. J.; Tewson, T. J. Synthesis 2002, 859–864. (g) Byun, H.-S.; He, L.;
Bittman, R. Tetrahedron 2000, 56, 7051–7091. (h) Avenoza, A.; Busto,
J. H.; Corzana, F.; Garc´ıa, J. I.; Peregrina, J. M. J. Org. Chem. 2003, 68,
4506–4513. (i) Galaud, F.; Blankenship, J. W.; Lubell, W. D. Heterocycles
2008, 76, 1121–1131. (j) F. Galaud, F.; Lubell, W. D. Biopolymers 2005,
80, 665–674. (k) M. Atfani, M.; Wei, L.; Lubell, W. D. Org. Lett. 2001, 3,
2965–2968. (l) Jamieson, A. G.; Boutard, N.; Beauregard, K.; Bodas, M. S.;
Ong, H.; Quiniou, C.; Chemtob, S.; Lubell, W. D. J. Am. Chem. Soc. 2009,
131, 7917–7927. (m) Jime´nez-Ose´s, G.; Avenoza, A.; Busto, J. H.;
Rodr´ıguez, F.; Peregrina, J. M. Chem.sEur. J. 2009, 15, 9810–9823.
(2) (a) Zubovics, A.; Toldy, L.; Varro, A.; Rabloczky, G.; Ku¨rthy, M.;
Dvortsak, P.; Jerkovich, G.; Tomori, E. Eur. J. Med. Chem. 1986, 21, 370–
378. (b) Lyle, T. A.; Magill, C. A.; Pitzenberger, S. M. J. Am. Chem. Soc.
1987, 109, 7890–7891. (c) Okuda, M.; Tomioka, K. Tetrahedron Lett. 1994,
35, 4585–4586. (d) Stiasny, H. C. Synthesis 1996, 259–264. (e) Aguilera,
B.; Fernandez-Mayoralas, A.; Jaramillo, C. Tetrahedron 1997, 53, 5863–
5878. (f) Lohray, B. B.; Bhushan, V. In AdVances in Heterocyclic Chemistry;
Katritzky, A. R., Ed.; Academic Press: San Diego, 1997; Vol. 68, pp
89-180. (g) Posakony, J. J.; Tewson, T. J. Synthesis 2002, 766–770. (h)
Jime´nez-Ose´s, G.; Avenoza, A.; Busto, J. H.; Rodr´ıguez, F.; Peregrina, J. M.
Tetrahedron: Asymmetry 2008, 19, 443–449, and references cited therein.
(3) (a) Bower, J. F.; Szeto, P.; Gallagher, T. Chem. Commun. 2005,
5793–5795. (b) Bower, J. F.; Chakthong, S.; Svenda, J.; Williams, A. J.;
Lawrence, R. M.; Szeto, P.; Gallagher, T. Org. Biomol. Chem. 2006, 4,
1868–1877. (c) Bower, J. F.; Riis-Johannessen, T.; Szeto, P.; Whitehead,
A. J.; Gallagher, T. Chem. Commun. 2007, 728–730. (d) Bower, J. F.; Szeto,
P.; Gallagher, T. Org. Biomol. Chem. 2007, 5, 143–150. (e) Bower, J. F.;
Szeto, P.; Gallagher, T. Org. Lett. 2007, 9, 4909–4912. (f) Bower, J. F.;
Williams, A. J.; Woodward, H. L.; Szeto, P.; Lawrence, R. M.; Gallagher,
T. Org. Biomol. Chem. 2007, 5, 2636–2644. (g) Nguyen, H. N.; Wang,
Z. J. Tetrahedron Lett. 2007, 48, 7460–7463. (h) Xiong, Z.; Gao, D. A.;
Cogan, D. A.; Goldberg, D. R.; Hao, M.-H.; Moss, N.; Pack, E.; Pargellis,
C.; Skow, D.; Trieselmann, T.; Werneburg, B.; White, A. Bioorg. Med.
Chem. Lett. 2008, 18, 1994–1999. (i) Bandini, M.; Eichholzer, A.; Tragni,
M.; Umani-Ronchi, A. Angew. Chem., Int. Ed. 2008, 47, 3238–3241. (j)
So, S. M.; Yeom, C.-E.; Cho, S. M.; Choi, S. Y.; Chung, Y. K.; Kim, B. M.
Synlett 2008, 702–706.
(4) (a) Bower, J. F.; Szeto, P.; Gallagher, T. Org. Lett. 2007, 9, 3283–
3286. (b) Rujirawanich, J.; Gallagher, T. Org. Lett. 2009, 11, 5494–5496.
(5) Reviews: (a) Parham, W. E.; Bradsher, C. K. Acc. Chem. Res. 1982,
15, 300–305. (b) Wakefield, B. J. The Chemistry of Organolithium
Compounds, 2nd ed.; Pergamon: New York, 1990. (c) Gray, M.; Tinkl,
M.; Snieckus, V. In ComprehensiVe Organometallic Chemistry II, Abel,
E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: Exeter, 1995; Vol.
11, pp 66-92. (d) Ardeo, A.; Collado, M. I.; Osante, I.; Ruiz, J.; Sotomayor,
N.; Lete, E. In Targets in Heterocyclic Systems; AtanassiO., Spinelli, D.,
Eds.; Italian Society of Chemistry: Rome, 2001; Vol. 5, pp 393-418. (e)
Clayden, J. Organolithiums: SelectiVity for Synthesis; Elsevier Science, Ltd.:
Oxford, 2002. (f) Mealy, M. J.; Bailey, W. F. J. Organomet. Chem. 2002,
646, 59–67. (g) Sotomayor, N.; Lete, E. Curr. Org. Chem. 2003, 7, 275–
300. (h) Na´jera, C.; Sansano, J. M.; Yus, M. Tetrahedron 2003, 59, 9255–
9303.
(6) (a) Posakony, J. J.; Grierson, J. R.; Tewson, T. J. J. Org. Chem.
2002, 67, 5164–5169. (b) Cochran, B. M.; Michael, F. E. Org. Lett. 2008,
10, 329–332.
(7) Baldwin, J. E.; Spivey, A. C.; Schofield, C. J. Tetrahedron:
Asymmetry 1990, 1, 877–880
.
(8) (a) Carmen de la Fuente, M.; Dominguez, D. Tetrahedron 2004,
60, 10019–10028. (b) Giger, R. K. A. Chem. Abstr. 1985, 103, 71188, Swiss
Pat. 1985, CH 648300. (c) Rys, V.; Couture, A.; Deniau, E.; Grandclaudon,
P. Eur. J. Org. Chem. 2003, 123, 1–1237. (d) Couture, A.; Deniau, E.;
Lamblin, M.; Lorion, M.; Grandclaudon, P. Synthesis 2007, 1434–1437.
(e) Lamblin, M.; Couture, A.; Deniau, E.; Grandclaudon, P. Tetrahedron
2007, 63, 2664–2669.
Org. Lett., Vol. 12, No. 6, 2010
1357