Table 3 Oxidative kinetic resolution of rac-1b with formation of (R)-2b
Variant Conversion (%)a E-value Sequence at positions 441–444
4 (a) M. T. Reetz, M. Bocola, J. D. Carballeira, D. Zha and A.
Vogel, Angew. Chem., 2005, 117, 4264–4268 (Angew. Chem., Int.
Ed., 2005, 44, 4192–4196); (b) M. T. Reetz, L.-W. Wang and M.
Bocola, Angew. Chem., 2006, 118, 1258–1263 (Angew. Chem., Int.
Ed., 2006, 45, 1236–1241).
254-21
254-58
254-60
254-67
254-94
254-95
a
59
36
39
51
39
48
4200
4200
147
187
133
Ala/Trp/Tyr/Thr
Ser/Trp/Tyr/Ala
Ala/Ala/Asp/Gly
Ala/Ala/Asp/Ser
Ser/Ser/Asp/Ser
Ala/Ser/Asp/Ser
5 For examples of focused libraries,1 see ESIw.
6 (a) W. M. Patrick and A. E. Firth, Biomol. Eng., 2005, 22, 105–112;
(b) A. E. Firth and W. M. Patrick, Nucleic Acids Res., 2008, 36,
W281–W285.
7 (a) L. Rui, Y. M. Kwon, A. Fishman, K. F. Reardon and T. W.
Wood, Appl. Environ. Microbiol., 2004, 70, 3246–3252; (b) A. D.
Bosley and M. Ostermeier, Biomol. Eng., 2005, 22, 57–61; (c) M. A.
Mena and P. S. Daugherty, Protein Eng., Des. Sel., 2005, 18,
559–561; (d) M. Denault and J. N. Pelletier, in Protein Engineering
43
Reaction time 16 h. Conditions: ESI.w
Protocols, ed. K. M. Arndt and K. M. Muller, Humana Press,
¨
Totowa, New Jersey, 2007, vol. 352, pp. 127–154.
defined by only two, six, nine and seven amino acids, respec-
tively. The choice of the amino acids as building blocks was
guided by sequence alignment of eight BVMOs focusing on a
loop region, and supplemented by a select few additional
amino acids as specified by appropriate degenerate codons.
This protocol involved the screening of only 1700 transfor-
mants, yet a significant improvement of the catalytic profile
was achieved, even though many other hits potentially acces-
sible by conventional NNK codon usage are excluded by such
a procedure. The pronounced robustness of PAMO was not
compromised in the mutants, which means that these
Baeyer–Villigerases may gain practical importance. We expect
that this approach will find general application, specifically
when randomizing whole loops or other large segments of
enzymes or antibodies, i.e., when the numbers problem in
directed evolution8b becomes exceedingly acute.
8 (a) M. T. Reetz and J. D. Carballeira, Nat. Protoc., 2007, 2,
891–903; (b) M. T. Reetz, D. Kahakeaw and R. Lohmer, Chem-
BioChem, 2008, 9, 1797–1804.
9 Previous uses of reduced amino acid alphabets:8b (a) A. R.
Davidson, K. J. Lumb and R. T. Sauer, Nat. Struct. Biol., 1995,
2, 856–864; (b) M. H. Hecht, A. Das, A. Go, L. H. Bradley and Y.
Wei, Protein Sci., 2004, 13, 1711–1723; (c) K. U. Walter, K.
Vamvaca and D. Hilvert, J. Biol. Chem., 2005, 280,
37742–37746; (d) S. Akanuma, T. Kigawa and S. Yokoyama, Proc.
Natl. Acad. Sci. U. S. A., 2002, 99, 13549–13553; (e) A. D. Solis
and S. Rackovsky, Proteins: Struct., Funct., Bioinf., 2007, 67,
785–788; (f) N. Doi, K. Kakukawa, Y. Oishi and H. Yanagawa,
Protein Eng., Des. Sel., 2005, 18, 279–284; (g) J. Yang, Y. Koga, H.
Nakano and T. Yamane, Protein Eng., 2002, 15, 147–152; (h) C. M.
Clouthier, M. M. Kayser and M. T. Reetz, J. Org. Chem., 2006, 71,
8431–8437.
10 (a) M. W. Fraaije, J. Wu, D. P. H. M. Heuts, E. W. van
Hellemond, J. H. L. Spelberg and D. B. Janssen, Appl. Microbiol.
Biotechnol., 2005, 66, 393–400; (b) G. de Gonzalo, D. E. Torres
Pazmino, G. Ottolina, M. W. Fraaije and G. Carrea, Tetrahedron:
Asymmetry, 2005, 16, 3077–3083; (c) D. E. Torres Pazmino, B.-J.
Baas, D. B. Janssen and M. W. Fraaije, Biochemistry, 2008, 47,
4082–4093; (d) D. E. Torres Pazmino, R. Snajdrova, B.-J. Baas,
M. Ghobrial, M. D. Mihovilovic and M. W. Fraaije,
Angew. Chem., 2008, 120, 2307–2310 (Angew. Chem., Int. Ed.,
We thank J. Rosentreter for chromatographic analyses and
J. Zhou (group of Prof. B. List) for providing rac-1b.
Notes and references
2008, 47, 2275–2278); (e) C. Rodrıguez, G. de Gonzalo, M. W.
´
Fraaije and V. Gotor, Tetrahedron: Asymmetry, 2007, 18,
1338–1344.
1 Recent reviews of directed evolution: (a) K. M. Arndt and K. M.
Muller, Protein Engineering Protocols (Methods in Molecular
¨
Biology), Humana Press, Totowa, New Jersey, 2007, vol. 352; (b)
F. H. Arnold and G. Georgiou, Directed Enzyme Evolution:
Screening and Selection Methods, Humana Press, Totowa, New
Jersey, 2003, vol. 230; (c) N. J. Turner, Trends Biotechnol., 2003,
21, 474–478; (d) S. V. Taylor, P. Kast and D. Hilvert, Angew.
Chem., 2001, 113, 3408–3436 (Angew. Chem., Int. Ed., 2001, 40,
3310–3335); (e) S. Brakmann and A. Schwienhorst, Evolutionary
Methods in Biotechnology (Clever Tricks for Directed Evolution),
Wiley-VCH, Weinheim, 2004; (f) E. G. Hibbert, F. Baganz, H. C.
Hailes, J. M. Ward, G. J. Lye, J. M. Woodley and P. A. Dalby,
Biomol. Eng., 2005, 22, 11–19; (g) S. B. Rubin-Pitel and H. Zhao,
Comb. Chem. High Throughput Screening, 2006, 9, 247–257; (h) J.
Kaur and R. Sharma, Crit. Rev. Biotechnol., 2006, 26, 165–199; (i)
S. Bershtein and D. S. Tawfik, Curr. Opin. Chem. Biol., 2008, 12,
151–158.
11 E. Malito, A. Alfieri, M. W. Fraaije and A. Mattevi, Proc. Natl.
Acad. Sci. U. S. A., 2004, 101, 13157–13162.
12 M. Bocola, F. Schulz, F. Leca, A. Vogel, M. W. Fraaije and M. T.
Reetz, Adv. Synth. Catal., 2005, 347, 979–986.
13 Reviews of BVMOs: (a) C. T. Walsh and Y.-C. J. Chen, Angew.
Chem., 1988, 100, 342–352 (Angew. Chem., Int. Ed. Engl., 1988, 27,
333–343); (b) J. D. Stewart, Curr. Org. Chem., 1998, 2, 195–216;
(c) S. Flitsch and G. Grogan, in Enzyme Catalysis in Organic
Synthesis, ed. K. Drauz and H. Waldmann, Wiley-VCH,
Weinheim, 2002, vol. 2, pp. 1202–1245; (d) V. Alphand, G. Carrea,
R. Wohlgemuth, R. Furstoss and J. M. Woodley, Trends Biotech-
nol., 2003, 21, 318–323; (e) P. C. Brzostowicz, D. M. Walters, S. M.
Thomas, V. Nagarajan and P. E. Rouviere, Appl. Environ. Micro-
biol., 2003, 69, 334–342; (f) M. D. Mihovilovic, F. Rudroff and
B. Grotzl, Curr. Org. Chem., 2004, 8, 1057–1069; (g) G.-J. ten Brink,
I. W. C. E. Arends and R. A. Sheldon, Chem. Rev., 2004, 104,
4105–4123; (h) R. Wohlgemuth, Eng. Life Sci., 2006, 6, 577–583; (i)
M. D. Mihovilovic, Curr. Org. Chem., 2006, 10, 1265–1287.
14 Recent examples of the use of sequence data in mutagenesis:1 (a) B.
2 Reviews of directed evolution of enantioselective enzymes: (a) M.
T. Reetz, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 5716–5722; (b)
M. T. Reetz, in Advances in Catalysis, ed. B. C. Gates and H.
Knozinger, Elsevier, San Diego, 2006, vol. 49, pp. 1–69; (c) M. T.
¨
Reetz, in Asymmetric Organic Synthesis with Enzymes, ed. V.
Gotor, I. Alfonso and E. Garcıa-Urdiales, Wiley-VCH, Weinheim,
´
Steipe, B. Schiller, A. Pluckthun and S. Steinbacher, J. Mol. Biol.,
¨
1994, 240, 188–192; (b) N. Amin, A. D. Liu, S. Ramer, W. Aehle,
D. Meijer, M. Metin, S. Wong, P. Gualfetti and V. Schellenberger,
Protein Eng., Des. Sel., 2004, 17, 787–793; (c) W. Besenmatter, P.
´
Kast and D. Hilvert, Proteins, 2007, 66, 500–506; (d) E. Vazquez-
Figueroa, J. Chaparro-Riggers and A. S. Bommarius, ChemBio-
Chem, 2007, 8, 2295–2301.
2008, pp. 21–63.
3 See for example, (a) S. Lutz and W. M. Patrick, Curr. Opin.
Biotechnol., 2004, 15, 291–297; (b) R. J. Fox and G. W. Huisman,
Trends Biotechnol., 2008, 26, 132–138; (c) A. Herman and D. S.
Tawfik, Protein Eng., Des. Sel., 2007, 20, 219–226; (d) J. D. Bloom,
M. M. Meyer, P. Meinhold, C. R. Otey, D. MacMillan and F. H.
Arnold, Curr. Opin. Struct. Biol., 2005, 15, 447–452; (e) T. S.
Wong, D. Roccatano, M. Zacharias and U. Schwaneberg, J. Mol.
Biol., 2006, 355, 858–871.
15 V. Alphand, R. Furstoss, S. Pedrago-Moreau, S. M. Roberts and
A. J. Willetts, J. Chem. Soc., Perkin Trans. 1, 1996, 1867–1872.
16 H. H. Hogrefe, J. Cline, G. L. Youngblood and R. M. Allen,
BioTechniques, 2002, 33, 1158–1165.
ꢀc
This journal is The Royal Society of Chemistry 2008
Chem. Commun., 2008, 5499–5501 | 5501