G. Broggini et al.
aq NaOH was added until an alkaline pH was obtained, and then the
mixture was extracted with Et2O (3ꢄ25 mL). The combined organic
layers were washed with brine, dried over Na2SO4, filtered, and evaporat-
ed under reduced pressure. The crude products were purified by flash
chromatography on silica gel.
3J=7.9 Hz, 3J=7.1 Hz, 1H; ArH), 6.00 (ddt, 3J=6.5, Jcis =10.2, Jtrans
17.2 Hz, 1H; =CHCH2), 5.24 (d, Jtrans =17.2 Hz, 1H; =CHHtrans), 5.17 (d,
cis =10.2 Hz, 1H; =CHHcis), 3.80 (s, 3H; CCNCH3), 3.67 (s, 2H;
=
J
NCH2Ar), 3.13 (d, 3J=6.5 Hz, 2H; NCH2CH=), 2.25 ppm (s, 3H;
CH2CH2NCH3); 13C NMR (100 MHz, CDCl3): d=139.1 (s, CAr), 137.0 (d,
CH2CH=CH2), 128.8 (s, CAr), 122.4 (d, CHAr), 120.1 (d, CHAr), 119.5 (d,
CHAr), 118.2 (s, CCH2N), 117.7 (t, CH=CH2), 110.4 (d, CHAr), 90,1 (s,
CI), 61.4 (t, CH2CH=CH2), 54.9 (t, NCH2Ar), 42.7 (q, CCNCH3),
34.7 ppm (q, CH2CH2NCH3); MS: m/z: 340 [M]+; elemental analysis
calcd (%) for C14H17IN2: C 49.43, H 5.04, N 8.23; found: C 49.57, H 4.88,
N 8.32.
N-Allyl-N-methyl-1-methyl-3-aminomethylindole (11c): Yield: 94%; Rf =
0.16 (petroleum ether/EtOAc 1:1, UV); colorless oil; 1H NMR
3
(400 MHz, CDCl3): d=7.74 (d, J=7.8 Hz, 1H; ArH), 7.12–7.35 (m, 3H;
ArH), 7.03 (s, 1H; =CHNCH3), 5.99 (ddt, 3J=6.3, Jcis =10.2, Jtrans
=
17.2 Hz, 1H; =CHCH2), 5.25 (d, Jtrans =17.2 Hz, 1H; =CHHtrans), 5.19 (d,
cis =10.2 Hz, 1H; =CHHcis), 3.80 (s, 3H; CCHNCH3), 3.74 (s, 2H;
J
NCH2Ar), 3.11 (d, 3J=6.3 Hz, 2H; NCH2CH=), 2.28 ppm (s, 3H;
CH2CH2NCH3); 13C NMR (100 MHz, CDCl3): d=137.7 (s, CAr), 136.8 (d,
CH2CH=CH2), 129.2 (d, CHAr), 129.1 (s, CAr), 122.2 (d, CHAr), 120.1 (d,
CHAr), 119.7 (d, CHAr), 118.1 (t, CH=CH2), 111.8 (s, CCH2N), 109.8 (d,
CHAr), 60.9 (t, CH2CH=CH2), 52.7 (t, NCH2Ar), 42.6 (q, CCHNCH3),
33.0 ppm (q, CH2CH2NCH3); MS: m/z: 214 [M]+; elemental analysis
calcd (%) for C14H18N2: C 78.46, H 8.47, N 13.07; found: C 78.32, H 8.58,
N 13.10.
N-Allyl-N-cyclohexyl-1-methyl-2-iodo-3-aminomethylindole (12d): Yield:
69%; Rf =0.68 (EtOAc, UV); colorless oil; 1H NMR (400 MHz, CDCl3):
3
d=7.85 (d, J=7.9, 1H; ArH), 7.30 (d, 3J=8.2, 1H; ArH), 7.23 (dd, 3J=
8.2 Hz, 3J=7.0 Hz, 1H; ArH), 7.11 (dd, 3J=7.9 Hz, 3J=7.0 Hz, 1H;
ArH), 5.89 (ddt, 3J=6.3, Jcis =10.1, Jtrans =17.2 Hz, 1H; =CHCH2), 5.19
(d, Jtrans =17.2 Hz, 1H; =CHHtrans), 5.05 (d, Jcis =10.1 Hz, 1H; =CHHcis),
3.79 (s, 2H; NCH2Ar), 3.78 (s, 3H; NCH3), 3.14 (d, 3J=6.3 Hz, 2H;
NCH2CH=), 2.48–2.62 (m, 1H; NCHcy), 1.15–1.92 ppm (m, 10H; cyH);
13C NMR (100 MHz, CDCl3): d=139.4 (s, CAr), 139.1 (d, CH2CH=CH2),
128.9 (s, CAr), 121.8 (d, CHAr), 120.0 (d, CHAr), 119.9 (d, CHAr), 119.8 (s,
CCH2N), 116.3 (t, CH=CH2), 109.8 (d, CHAr), 89.4 (s, CI), 58.6 (d,
NCHcy), 53.3 (t, CH2CH=CH2), 48.1 (t, NCH2Ar), 34.6 (q, NCH3), 29.2
(t, CH2cy), 27.1 (t, CH2cy), 22.8 ppm (t, CH2cy); MS: m/z: 408 [M]+; ele-
mental analysis calcd (%) for C19H25IN2: C 55.89, H 6.17, N 6.86; found:
C 55.78, H 6.25, N 6.94.
N-Allyl-N-cyclohexyl-1-methyl-3-aminomethylindole (11d): Yield: 70%;
Rf =0.36 (petroleum ether/EtOAc 2:1, UV); colorless oil; 1H NMR
(400 MHz, CDCl3): d=7.77 (d, 3J=7.9, 1H; ArH), 7.30 (d, 3J=8.2, 1H;
ArH), 7.23 (dd, 3J=8.2 Hz, 3J=6.9 Hz, 1H; ArH), 7.11 (dd, 3J=7.9 Hz,
3J=6.9 Hz, 1H; ArH), 6.98 (s, 1H; =CHNCH3), 5.89 (ddt, 3J=6.2, Jcis
=
10.2,
Jtrans =17.2 Hz, 1H; =CHCH2), 5.19 (d, Jtrans =17.2 Hz, 1H; =
CHHtrans), 5.07 (d, Jcis =10.2 Hz, 1H; =CHHcis), 3.82 (s, 2H; NCH2Ar),
3.77 (s, 3H; NCH3), 3.20 (d, 3J=6.3 Hz, 2H; NCH2CH=), 2.66 (tt, 3J=
General procedure for palladacycles 9 and 13: [PdACTHUNTRGNE(UNG PPh3)4] (1.154 g,
3
11.5 Hz, J=3.3 Hz, 1H; NCHcy), 1.87–1.92 (m, 2H; cyH), 1.78–1.83 (m,
1 mmol) and Et3N (0.42 mL, 3 mmol) in CH3CN (2 mL) were added to a
solution of 8 or 12 (1 mmol) in CH3CN (3 mL). The mixture was stirred
at room temperature (12) or under heating at reflux (8) for 2 h. After re-
moval of the solvent under reduced pressure, H2O (10 mL) was added
and the aqueous layer was extracted with CH2Cl2 (3ꢄ10 mL). The com-
bined organic layers were dried (Na2SO4) and eluted through a silica gel
column.
2H; cyH), 1.60–1.68 (m, 1H; cyH), 1.13–1.38 ppm (m, 5H; cyH);
13C NMR (100 MHz, CDCl3): d=139.0 (d, CH2CH=CH2), 137.9 (s, CAr),
128.8 (s, CAr), 128.4 (d, CHAr), 122.0 (d, CHAr), 120.5 (d, CHAr), 119.2 (d,
CHAr), 116.3 (t, CH=CH2), 114.3 (s, CCH2N), 109.6 (d, CHAr), 58.9 (d,
NCHcy), 53.5 (t, CH2CH=CH2), 45.6 (t, NCH2Ar), 33.1 (q, NCH3), 29.4
(t, CH2cy), 27.2 (t, CH2cy), 26.9 ppm (t, CH2cy); MS: m/z: 282 [M]+; ele-
mental analysis calcd (%) for C19H26N2: C 80.80, H 9.28, N 9.92; found:
C 80.95, H 9.15, N 9.90.
Palladacycle 9a: Yield: 25%; Rf =0.12 (petroleum ether/EtOAc 8:2,
UV); brown solid; m.p. 145–1478C (diisopropyl ether); 1H NMR
(400 MHz, CDCl3): d=7.25–7.36 (m, 18H; ArH), 6.97 (d, 3J=7.3 Hz,
1H; ArH), 6.64–6.69 (m, 1H; =CHCH2), 5.44 (d, Jcis =11.5 Hz, 1H; =
CHHcis), 5.40 (d, Jtrans =17.3 Hz, 1H; =CHHtrans), 5.07 (d, 2J=14.7 Hz,
1H; ArCHHN), 4.71 (dd, 2J=3.7 Hz, 3J=11.4 Hz, 1H; NCHHCH=),
3.78 (dd, 3J=5.5 Hz, 2J=14.7 Hz, 1H; ArCHHN), 3.20 (d, 3J=11.4 Hz,
1H; NCHHCH=), 3.04–3.11 (m, 1H; NCHHCH), 2.58 (s br, 1H;
NCHHCH), 2.40–2.42 (m, 1H; ArCHCH2), 1.72 (dd, 3J=3.2 Hz, 2J=
12.5 Hz, 1H; PdCHHCH), 1.58–1.60 ppm (m, 1H; PdCHHCH);
13C NMR (100 MHz, CDCl3): d=141.3 (s, CAr), 135.0 (d, CHAr), 134.9 (d,
CH2CH=CH2), 134.8 (d, CHArPPh3), 134.4 (d, CHAr), 132.9 (s, CAr), 132.8
(s, CAr), 132.2 (s, CAr), 131.7 (s, CAr), 130.4 (d, CHArPPh3), 128.4 (d,
CHArPPh3), 128.3 (d, CHArPPh3), 128.1 (d, CHAr), 127.4 (d, CHAr), 127.2
(d, CHAr), 126.6 (d, CHAr), 121.0 (t, CH2CH=CH2), 63.8 (t, CH2CH=
CH2), 60.8 (t, NCH2CH), 60.3 (t, ArCH2N), 45.9 (t, PdCH2CH), 45.0 ppm
(d, ArCHCH2); 31P NMR (162 MHz, CDCl3): d=34.5 ppm (s); MS: m/z:
633 [M]+ (calculated for the most abundant Pd isotope, 106Pd); elemental
analysis calcd (%) for C31H31BrNPPd: C 58.65, H 4.92, N 2.21; found: C
58.56, H 5.13, N 2.17.
General procedure for 3-(aminomethyl)-substituted 2-iodoindoles 12:
The products were prepared according to literature procedures.[14]
N,N’-Diallyl-2-iodo-3-aminomethylindole (12a): Yield: 52%; Rf =0.32
(petroleum ether/EtOAc 85:15, UV); colorless oil; 1H NMR (400 MHz,
CDCl3): d=8.06 (br s, 1H; NH), 7.82 (d, 3J=7.7 Hz, 1H; ArH), 7.30 (d,
3J=7.8 Hz, 1H; ArH), 7.15 (dd, 3J=7.7 Hz, 3J=6.3 Hz, 1H; ArH), 7.11
(dd, 3J=7.8 Hz, 3J=6.3 Hz, 1H; ArH), 5.96 (ddt, 3J=6.4, Jcis =10.2,
J
trans =17.2 Hz, 2H; =CHCH2), 5.23 (d, Jtrans =17.2 Hz, 2H; =CHHtrans),
5.16 (d, Jcis =10.2 Hz, 2H; =CHHcis), 3.69 (s, 2H; NCH2Ar), 3.14 ppm (d,
3J=6.4 Hz, 4H; NCH2CH=). 13C NMR (100 MHz, CDCl3): d=139.2 (s,
CAr), 136.8 (d, CH2CH=CH2), 128.9 (s, CAr), 122.4 (d, CHAr), 119.8 (d,
CHAr), 119.7 (d, CHAr), 119.6 (s, CCH2N), 117.8 (t, CH=CH2), 110.7 (d,
CHAr), 89.8 (s, CI), 57.1 (t, CH2CH=CH2), 51.8 ppm (t, NCH2Ar); MS:
m/z: 352 [M]+; elemental analysis calcd (%) for C15H17IN2: C 51.15, H
4.86, N 7.95; found: C 51.36, H 4.75, N 8.04.
N,N’-Diallyl-1-methyl-2-iodo-3-aminomethylindole (12b): Yield: 72%;
Rf =0.78 (petroleum ether/EtOAc 1:1, UV); colorless oil; 1H NMR
(400 MHz, CDCl3): d=7.83 (d, 3J=7.9, 1H; ArH), 7.32 (d, 3J=8.2, 1H;
ArH), 7.20 (dd, 3J=8.2 Hz, 3J=7.2 Hz, 1H; ArH), 7.11 (dd, 3J=7.9 Hz,
Palladacycle 9b: Yield: 28%; Rf =0.16 (petroleum ether/EtOAc 8:2,
UV); brown solid; m.p. 156–1588C (diisopropyl ether); 1H NMR
(400 MHz, CDCl3): d=7.27–7.37 (m, 15H; ArH), 6.88 (d, 3J=8.3 Hz,
1H; ArH), 6.82 (dd, 4J=2.5 Hz, 3J=8.3 Hz, 1H; ArH), 6.76 (d, 4J=
2.3 Hz, 1H; ArH), 6.63–6.67 (m, 1H; =CHCH2), 5.44 (d, Jcis =11.6 Hz,
1H; =CHHcis), 5.40 (d, Jtrans =17.2 Hz, 1H; =CHHtrans), 5.02 (d, 2J=
14.7 Hz, 1H; ArCHHN), 4.69 (dd, 2J=3.9 Hz, 3J=12.6 Hz, 1H;
NCHHCH=), 3.88 (s, 3H; CH3), 3.75 (dd, 3J=5.5 Hz, 2J=14.7 Hz, 1H;
ArCHHN), 3.18 (d, 3J=10.3 Hz, 1H; NCHHCH=), 3.03–3.10 (m, 1H;
NCHHCH), 2.52 (br s, 1H; NCHHCH), 2.37–2.40 (m, 1H; ArCHCH2),
1.71 (dd, 3J=3.2 Hz, 2J=9.2 Hz, 1H; PdCHHCH), 1.53–1.59 ppm (m,
1H; PdCHHCH); 13C NMR (100 MHz, CDCl3): d=158.5 (s, CAr), 135.0
(d, CHArPPh3), 134.9 (d, CHArPPh3), 134.4 (d, CH2CH=CH2), 133.9 (s,
CAr), 133.5 (s, CAr), 132.2 (s, CAr), 131.7 (s, CAr), 131.6 (s, CAr), 130.5 (d,
3
3J=7.2 Hz, 1H; ArH), 5.98 (ddt, J=6.4, Jcis =10.2, Jtrans =17.2 Hz, 2H; =
CHCH2), 5.24 (d, Jtrans =17.2 Hz, 2H; =CHHtrans), 5.18 (d, Jcis =10.2 Hz,
2H; =CHHcis), 3.79 (s, 3H; NCH3), 3.75 (s, 2H; NCH2Ar), 3.15 ppm (d,
3J=6.4 Hz, 4H; NCH2CH=). 13C NMR (100 MHz, CDCl3): d=139.2 (s,
CAr), 136.8 (d, CH2CH=CH2), 128.8 (s, CAr), 122.4 (d, CHAr), 119.8 (d,
CHAr), 119.6 (d, CHAr), 118.4 (s, CCH2N), 117.6 (t, CH=CH2), 109.8 (d,
CHAr), 89.7 (s, CI), 57.0 (t, CH2CH=CH2), 51.8 (t, NCH2Ar), 34.7 ppm
(q, NCH3); MS: m/z: 366 [M]+; elemental analysis calcd (%) for
C16H19IN2: C 52.47, H 5.23, N 7.65; found: C 52.56, H 5.14, N 7.51.
N-Allyl-N-methyl-1-methyl-2-iodo-3-aminomethylindole (12c): Yield:
1
34%; Rf =0.38 (petroleum ether/EtOAc 7:3, UV); colorless oil; H NMR
(400 MHz, CDCl3): d=7.75 (d, 3J=7.9 Hz, 1H; ArH), 7.32 (d, 3J=
8.2 Hz, 1H; ArH), 7.19 (dd, 3J=8.2 Hz, 3J=7.1 Hz, 1H; ArH), 7.10 (dd,
1676
ꢂ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2010, 16, 1670 – 1678