C O M M U N I C A T I O N S
ether hydrogenolysis (91%), oxidation of the free alcohol 19 (DMP,
pyridine-CH2Cl2, 0 °C, 3 h, 76%), and diastereoselective ketone
reduction (LiAlH(OtBu)3, THF, 0 °C, 10 h, 87%, 30:1 dr) from
the less hindered convex face of 20, followed by C4 alcohol 21
acetylation (Ac2O, DMAP, pyridine, 95%) to provide 22 (Scheme
2). O-Methylation and reductive removal of the lactam carbonyl
(MeOTf, 2,6-di-tert-butylpyridine, CH2Cl2, 25 °C, 2 h; NaBH4,
MeOH, 25 °C, 5 min) followed by MOM ether deprotection (HCl,
MeOH, 25 °C, 16 h) liberated the primary alcohol 24 (85% for
two steps from 22). Oxidation (3 equiv of SO3-Py, 3 equiv of
Et3N, CH2Cl2/DMSO, 25 °C, 1-2 h) of 24 provided an unstable
R-aminoaldehyde that not only rapidly epimerized but also was found
to be prone to hydrate and enol formation. Moreover, we found that
simply exposing the crude aldehyde to silica gel in the presence of
Et3N (1% Et3N/EtOAc) in the course of conventional purification led
to clean conversion to the stable N,O-ketal 25 (85%), eq 1.
Supporting Information Available: Full experimental details are
provided. This material is available free of charge via the Internet at
References
(1) Gorman, M.; Neuss, N.; Biemann, K. J. Am. Chem. Soc. 1962, 84, 1058.
(2) Moncrief, J. W.; Lipscomb, W. N. J. Am. Chem. Soc. 1965, 84, 4963.
(3) (a) Noble, R. L.; Beer, C. T.; Cutts, J. H. Ann. N.Y. Acad. Sci. 1958, 76,
882. (b) Noble, R. L. Lloydia 1964, 27, 280. (c) Svoboda, G. H.; Nuess,
N.; Gorman, M. J. Am. Pharm. Assoc. Sci. Ed. 1959, 48, 659.
(4) Review: Neuss, N.; Neuss, M. N. In The Alkaloids; Brossi, A., Suffness,
M., Eds.; Academic: San Diego, 1990; Vol. 37, p 229.
(5) Reviews: (a) Pearce, H. L. In The Alkaloids; Brossi, A., Suffness, M., Eds.;
Academic: San Diego, 1990; Vol. 37, p 145. (b) Borman, L. S.; Kuehne,
M. E. In The Alkaloids; Brossi, A., Suffness, M., Eds.; Academic: San
Diego, 1990; Vol. 37, p 133.
(6) (a) Mangeney, P.; Andriamialisoa, R. Z.; Langlois, N.; Langlois, Y.; Potier,
P. J. Am. Chem. Soc. 1979, 101, 2243. (b) Kutney, J. P.; Choi, L. S. L.;
Nakano, J.; Tsukamoto, H.; McHugh, M.; Boulet, C. A. Heterocycles 1988,
27, 1845. (c) Kuehne, M. E.; Matson, P. A.; Bornmann, W. G. J. Org.
Chem. 1991, 56, 513. Bornmann, W. G.; Kuehne, M. E. J. Org. Chem.
1992, 57, 1752. Kuehne, M. E.; Zebovitz, T. C.; Bornmann, W. G.; Marko,
I. J. Org. Chem. 1987, 52, 4340. (d) Magnus, P.; Mendoza, J. S.; Stamford,
A.; Ladlow, M.; Willis, P. J. Am. Chem. Soc. 1992, 114, 10232. (e)
Yokoshima, S.; Ueda, T.; Kobayashi, S.; Sato, A.; Kuboyama, T.;
Tokuyama, H.; Fukuyama, T. J. Am. Chem. Soc. 2002, 124, 2137.
Kuboyama, T.; Yokoshima, S.; Tokuyama, H.; Fukuyama, T. Proc. Natl.
Acad. Sci. U.S.A. 2004, 101, 11966. (f) Ishikawa, H.; Colby, D. A.; Boger,
D. L. J. Am. Chem. Soc. 2008, 130, 420. Ishikawa, H.; Colby, D. A.; Seto,
S.; Va, P.; Tam, A.; Kakei, H.; Rayl, T. J.; Hwang, I.; Boger, D. L. J. Am.
Chem. Soc. 2009, 131, 4904.
(7) Review: Kuehne, M. E.; Marko, I. In The Alkaloids; Brossi, A., Suffness,
M., Eds.; Academic: San Diego, 1990; Vol. 37, p 77.
(8) Racemic total syntheses: (a) Ando, M.; Bu¨chi, G.; Ohnuma, T. J. Am. Chem.
Soc. 1975, 97, 6880. (b) Kutney, J. P.; Bunzli-Trepp, U.; Chan, K. K.; De
Souza, J. P.; Fujise, Y.; Honda, T.; Katsube, J.; Klein, F. K.; Leutwiler,
A.; Morehead, S.; Rohr, M.; Worth, B. R. J. Am. Chem. Soc. 1978, 100,
4220. (c) Andriamialisoa, R. Z.; Langlois, N.; Langlois, Y. J. Org. Chem.
1985, 50, 961. Formal total syntheses: (d) Ban, Y.; Sekine, Y.; Oishi, T.
Tetrahedron Lett. 1978, 2, 151. (e) Takano, S.; Shishido, K.; Sato, M.;
Yuta, K.; Ogasawara, K. J. Chem. Soc., Chem. Commun. 1978, 943. Takano,
S.; Shishido, K.; Matsuzaka, J.; Sato, M.; Ogasawara, K. Heterocycles 1979,
13, 307. (f) Danieli, B.; Lesma, G.; Palmisano, G.; Riva, R. J. Chem. Soc.,
Chem. Commun. 1984, 909. Danieli, B.; Lesma, G.; Palmisano, G.; Riva,
R. J. Chem. Soc., Perkin Trans. 1 1987, 155. (g) Zhou, S.; Bommeziijn,
S.; Murphy, J. A. Org. Lett. 2002, 4, 443.
(9) Enantioselective total syntheses: (a) Feldman, P. L.; Rapoport, H. J. Am.
Chem. Soc. 1987, 109, 1603. (b) Kuehne, M. E.; Podhorez, D. E.; Mulamba,
T.; Bornmann, W. G. J. Org. Chem. 1987, 52, 347. (c) Cardwell, K.; Hewitt,
B.; Ladlow, M.; Magnus, P. J. Am. Chem. Soc. 1988, 110, 2242. (d)
Kobayashi, S.; Ueda, T.; Fukuyama, T. Synlett 2000, 883.
(10) (a) Ishikawa, H.; Elliott, G. I.; Velcicky, J.; Choi, Y.; Boger, D. L. J. Am.
Chem. Soc. 2006, 128, 10596. (b) Choi, Y.; Ishikawa, H.; Velcicky, J.;
Elliott, G. I.; Miller, M. M.; Boger, D. L. Org. Lett. 2005, 7, 4539.
(11) (a) Wilkie, G. D.; Elliott, G. I.; Blagg, B. S. J.; Wolkenberg, S. E.; Soenen,
D. B.; Miller, M. M.; Pollack, S.; Boger, D. L. J. Am. Chem. Soc. 2002,
124, 11292. (b) Elliott, G. I.; Fuchs, J. R.; Blagg, B. S. J.; Ishikawa, H.;
Tao, H.; Yuan, Z.; Boger, D. L. J. Am. Chem. Soc. 2006, 128, 10589. For
reviews of heterocyclic azadiene cycloaddition reactions, see: (c) Boger,
D. L. Tetrahedron 1983, 39, 2869. (d) Boger, D. L. Chem. ReV. 1986, 86,
781. (e) Boger, D. L.; Weinreb, S. M. Hetero Diels-Alder Methodology in
Organic Synthesis; Academic: San Diego, 1987.
Formation of the primary tosylate 26 (TsCl, DMAP, Et3N, CH2Cl2,
25 °C, 16 h, 93%) and its subjection to conditions developed for ring
expansion18 (NaOAc, dioxane-H2O, 70 °C) provided the key six-
membered ring ketone 17 (61%). Although several mechanistic
possibilities can be envisioned for this transformation, some of which
proceed through an aziridinium ion, it is most simply and formally
represented as hydrolysis of the N,O-ketal to release a reactive
R-tosyloxymethyl ketone followed by its intramolecular N-alkylation
to provide the six-membered ketone 17 (eq 2).
(12) (a) Elliott, G. I.; Velcicky, J.; Ishikawa, H.; Li, Y.; Boger, D. L. Angew. Chem.,
Int. Ed. 2006, 45, 620. (b) Yuan, Z.; Ishikawa, H.; Boger, D. L. Org. Lett.
2005, 7, 741. (c) Ishikawa, H.; Boger, D. L. Heterocycles 2007, 72, 95.
(13) Imamoto, T.; Takiyama, N.; Nakamura, K.; Hatajima, T.; Kamiya, Y. J. Am.
Chem. Soc. 1989, 111, 4392.
(14) Christl, M.; Lanzendoerfer, U.; Groetsch, M. M.; Ditterich, E.; Hegmann,
J. Chem. Ber. 1990, 123, 2031.
(15) The structure and stereochemistry of 15 (CCDC 758511) and the MOM-
deprotected primary alcohol of 18 (CCDC 758510) were established by
X-ray and conducted on the unnatural and natural enantiomer series,
respectively.
(16) Padwa, A.; Price, A. T. J. Org. Chem. 1998, 63, 556. and 1995, 60, 6258.
(17) The substrate 13 bearing the (Z)-enol ether also participates in the
cycloaddition cascade but not as effectively as the (E)-enol ether (51-
57% vs 72%) and requires more dilute reaction conditions (0.1 vs 1-5
mM).
(18) (a) Frehel, D.; Badorc, A.; Pereillo, J.-M.; Maffrand, J.-M. J. Heterocyclic
Chem. 1985, 22, 1011. (b) Kavadias, G.; Velkof, S.; Belleau, B. Can.
J. Chem. 1979, 57, 1861.
(19) Abbreviations: EDCI ) 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide
hydrochloride; DMP ) Dess-Martin periodinane; MOM ) methoxymethyl;
DMAP ) 4-dimethylaminopyridine; DMSO ) dimethylsulfoxide; NMM
) N-methylmorpholine; Teoc ) 2-(trimethylsilyl)ethoxycarbonyl.
Diastereoselective reduction of 27 (L-selectride, THF, -78 °C, 0.5 h)
provided the penultimate secondary alcohol 28 (91%, >30:1 dr),12c
which in turn underwent regioselective elimination as previously
described10 to provide vindoline (1) upon Mitsunobu activation in the
absence of added nucleophiles, Scheme 2.19
Exploration of additional means to effect the key ring expansion
reaction, extensions to the preparation of additional Aspidosperma
alkaloids and key vindoline analogues, and their incorporation (e.g.,
24 and 28) into vinblastine analogues are in progress and will be
reported in due course.
Acknowledgment. We gratefully acknowledge the financial
support of the National Institutes of Health (CA115526 and CA042056)
and the Skaggs Institute for Chemical Biology. We wish to thank Dr.
Raj Chadha for the X-ray crystal structures and the Uehara Memorial
Foundation for fellowship support (Y.S.). D.K. is a Skaggs Fellow.
JA910695E
9
J. AM. CHEM. SOC. VOL. 132, NO. 11, 2010 3687