Helv. Chim. Acta 2020, 103, e1900238
[25] J. Yoshida, K. Tamao, T. Kakui, A. Kurita, M. Murata, K.
Yamada, M. Kumada, ‘Organofluorosilicates in organic
synthesis. Copper(II) oxidation of organopentafluorosili-
cates’, Organometallics 1982, 1, 369–380.
[26] T. Wang, D.-H. Wang, ‘Potassium Alkylpentafluorosilicates,
Practical Primary Alkyl Radical Precursors in the C-1
Alkylation of Tetrahydroisoquinolines’, Org. Lett. 2019, 21,
3981–3985.
[27] Y. Nishigaichi, A. Suzuki, A. Takuwa, ‘Remarkable
enhancement of photo-allylation of aromatic carbonyl
compounds with a hypervalent allylsilicon reagent by
donor molecules’, Tetrahedron Lett. 2007, 48, 211–214.
[28] D. Matsuoka, Y. Nishigaishi, ‘Photosubstitution of Dicya-
noarenes by Hypervalent Allylsilicon Reagents via Photo-
induced Electron Transfer’, Chem. Lett. 2014, 43, 559–561.
[29] C. L. Frye, ‘Pentacoordinate Silicon Derivatives. II. Salts of
Bis(o-arylenedioxy) organosiliconic Acids’, J. Am. Chem. Soc.
1964, 86, 3170–3171.
[30] G. Sorin, R. Martinez Mallorquin, Y. Contie, A. Baralle, M.
Malacria, J.-P. Goddard, L. Fensterbank, ‘Oxidation of Alkyl
Trifluoroborates: An Opportunity for Tin-Free Radical
Chemistry’, Angew. Chem. Int. Ed. 2010, 49, 8721–8723;
Angew. Chem. 2010, 122, 8903–8905.
[31] V. Corcé, L.-M. Chamoreau, E. Derat, J.-P. Goddard, C.
Ollivier, L. Fensterbank, ‘Silicates as Latent Alkyl Radical
Precursors: Visible-Light Photocatalytic Oxidation of Hyper-
valent Bis-Catecholato Silicon Compounds’, Angew. Chem.
Int. Ed. 2015, 54, 11414–11418; Angew. Chem. 2015, 127,
11576–11580.
[32] M. Jouffroy, D. N. Primer, G. A. Molander, ‘Base-Free Photo-
redox/Nickel Dual-Catalytic Cross-Coupling of Ammonium
Alkylsilicates’, J. Am. Chem. Soc. 2016, 138, 475–478.
[33] J. M. R. Narayanam, C. R. J. Stephenson, ‘Visible light photo-
redox catalysis: applications in organic synthesis’, Chem.
Soc. Rev. 2011, 40, 102–113.
[34] C. K. Prier, D. A. Rankic, D. W. C. MacMillan, ‘Visible Light
Photoredox Catalysis with Transition Metal Complexes:
Applications in Organic Synthesis’, Chem. Rev. 2013, 113,
5322–5363.
[35] J. Xuan, L.-Q. Lu, J.-R. Chen, W.-J. Xiao, ‘Visible-Light Driven
Photoredox Catalysis in the Construction of Carbocyclic
and Heterocyclic Ring Systems’, Eur. J. Org. Chem. 2013, 30,
6755–6770.
[41] J.-P. Goddard, C. Ollivier, L. Fensterbank, ‘Photoredox
Catalysis for the Generation of Carbon Centered Radicals’,
Acc. Chem. Res. 2016, 49, 1924–1936.
[42] K. Nakajima, Y. Miyake, Y. Nishibayashi, ‘Synthetic Utiliza-
tion of α-Aminoalkyl Radicals and Related Species in Visible
Light Photoredox Catalysis’, Acc. Chem. Res. 2016, 49,
1946–1956.
[43] T. P. Yoon, ‘Photochemical Stereocontrol Using Tandem
Photoredox-Chiral Lewis Acid Catalysis’, Acc. Chem. Res.
2016, 49, 2307–2315.
[44] J.-R. Chen, X.-Q. Hu, L.-Q. Lu, W.-J. Xiao, ‘Visible light
photoredox-controlled reactions of N-radicals and radical-
ion’, Chem. Soc. Rev. 2016, 45, 2044–2056.
[45] N. A. Romero, D. A. Nicewicz, ‘Organic Photoredox Cataly-
sis’, Chem. Rev. 2016, 116, 10075–10166.
[46] S. Poplata, A. Tröster, Y.-Q. Zou, T. Bach, ‘Recent Advances
in the Synthesis of Cyclobutanes by Olefin [2+2] Photo-
cycloaddition Reactions’, Chem. Rev. 2016, 116, 9748–
9815.
[47] D. Ravelli, S. Protti, M. Fagnoni, ‘CarbonÀ Carbon Bond
Forming Reactions via Photogenerated Intermediates’,
Chem. Rev. 2016, 116, 9850–9913.
[48] J. K. Matsui, S. B. Lang, D. R. Heitz, G. A. Molander, ‘Photo-
redox-Mediated Routes to Radicals: The Value of Catalytic
Radical Generation in Synthetic Methods Development’,
ACS Catal. 2017, 7, 2563–2575.
[49] L. Marzo, S. K. Pagire, O. Reiser, B. König, ‘Visible-Light
Photocatalysis: Does It Make a Difference in Organic
Synthesis?’, Angew. Chem. Int. Ed. 2018, 57, 10034–10072;
Angew. Chem. 2018, 130, 10188–10228.
[50] C. Lévêque, L. Chenneberg, V. Corcé, J.-P. Goddard, C.
Ollivier, L. Fensterbank, ‘Primary alkyl bis-catecholato
silicates in dual photoredox/nickel catalysis: aryl- and
heteroaryl-alkyl cross coupling reactions’, Org. Chem. Front.
2016, 3, 462–465.
[51] C. Lévêque, L. Chenneberg, V. Corcé, C. Ollivier, L.
Fensterbank, ‘Organic photoredox catalysis for the oxida-
tion of silicates: applications in radical synthesis and dual
catalysis’, Chem. Commun. 2016, 52, 9877–9880.
[52] C. Lévêque, V. Corcé, L. Chenneberg, C. Ollivier, L.
Fensterbank, ‘Photoredox/Nickel Dual Catalysis for the C
(sp3)À C(Sp3) Cross-Coupling of Alkylsilicates with Alkyl
Halides’, Eur. J. Org. Chem. 2017, 2118–2121.
[53] A. Cartier, E. Levernier, V. Corcé, T. Fukuyama, A.-L.
Dhimane, C. Ollivier, I. Ryu, L. Fensterbank, ‘Carbonylation
of Alkyl Radicals Derived from Organosilicates through
Visible-Light Photoredox Catalysis’, Angew. Chem. Int. Ed.
2019, 58, 1789–1793.
[54] E. Levernier, V. Corcé, L.-M. Rakotoarison, A. Smith, M.
Zhang, S. Ognier, M. Tatoulian, C. Ollivier, L. Fensterbank,
‘Cross coupling of alkylsilicates with acyl chlorides via
photoredox/nickel dual catalysis: a new synthesis method
for ketones’, Org. Chem. Front. 2019, 6, 1378–1382.
[55] E. Wächtler, A. Kämpfe, K. Krupinksi, D. Gerlach, E. Kroke, E.
Brendler, J. Wägler, ‘New Insights into Hexacoordinated
Silicon Complexes with 8-Oxyquinolinato Ligands: 1,3-Shift
of Si-Bound Hydrocarbyl Substituents and the Influence of
Si-Bound Halides on the 8-Oxyquinolinate Coordination
Features’, Z. Naturforsch. B 2014, 69, 1402–1418.
[36] T. Koike, M. Akita, ‘Visible-light radical reaction designed by
Ru- and Ir-based photoredox catalysis’, Inorg. Chem. Front.
2014, 1, 562–576.
[37] M. H. Shaw, J. Twilton, D. W. C. MacMillan, ‘Photoredox
Catalysis in Organic Chemistry’, J. Org. Chem. 2016, 81,
6898–6926.
[38] J. Xuan, Z.-G. Zang, W.-J. Xiao, ‘Visible-Light-Induced
Decarboxylative Functionalization of Carboxylic Acids and
Their Derivatives’, Angew. Chem. Int. Ed. 2015, 54, 15632–
15641; Angew. Chem. 2015, 127, 15854–15864.
[39] I. Ghosh, L. Marzo, A. Das, S. Rizwan, B. König, ‘Visible Light
Mediated Photoredox Catalytic Arylation Reactions’, Acc.
Chem. Res. 2016, 49, 1566–1577.
[40] J.-R. Chen, X.-Q. Hu, L.-Q. Lu, W.-J. Xiao, ‘Exploration of
Visible-Light Photocatalysis in Heterocycle Synthesis and
Functionalization: Reaction Design and Beyond’, Acc.
Chem. Res. 2016, 49, 1911–1923.
[56] J. Weiß, B. Theis, S. Metz, C. Burschka, C. F. Guerra, F. M.
Bickelhaupt, R. Tacke, ‘Neutral Pentacoordinate Halogeno-
(10 of 11) e1900238
© 2020 Wiley-VHCA AG, Zurich, Switzerland