C O M M U N I C A T I O N S
Table 2. Enantioselective Intramolecular Oxo-Michael Reaction
The catalytic working model shown below was proposed for
desymmetrization process. The chiral phosphoric acid acts as a
bifunctional catalyst in which the acidic proton and the PdO moiety
of the catalyst form hydrogen bonds with the carbonyl group and
the hydroxyl group, respectively.
c d
,
entrya
2, R
time (h)
4, yield (%)b d
ee (%)
,
1
2
3
4
5
6
7
8
2a, [Me
2b, [Et
2c, [iPr
2d, [Ph
2e, [4-FC6H4
2f, [4-ClC6H4
2g, [4-BrC6H4
2h, [4-MeC6H4
2i, [3-MeC6H4
2j, [2-MeC6H4
2k, [3,5-Me2C6H3
2l, [3,5-(CF3)2C6H3
3
5
24
10
8
4a, [91 [62]
4b, [91
4c, [71
94 [99]
78
61
4d, [92 [68]
4e, [91 [78]
4f, [90 [68]
4g, [84 [64]
4h, [91 [72]
4i, [91 [75]
4j, [92 [57]
4k, [81 [60]
4l, [93
91 [99]
90 [99]
91 [99]
90 [99]
92 [99]
91 [96]
95 [99]
90 [99]
88
8
In summary, we have developed chiral phosphoric acid-catalyzed
desymmetrization of cyclohexadienones via oxo-Michael reaction,
affording enantioenriched 1,4-dioxane derivatives in excellent yield.
With this newly established methodology, enantioselective synthesis
of cleroindicins could be realized in a highly efficient and concise
manner.
10
10
10
20
8
9
10
11
12
10
a Reaction conditions: 3h (10 mol %) in CH2Cl2 at room temperature.
b Isolated yields. c Determined by chiral HPLC analysis. d Values after
one recrystallization are given in brackets.
Acknowledgment. We thank the NSFC (20732006, 20821002,
20923005) and MOST (973 Program 2010CB833300) for financial
support and CNIBR for a postdoctoral fellowship to Q.G.
Scheme 1. Derivatization of the Oxo-Michael Adduct
Supporting Information Available: Experimental procedures and
characterization of the products. This material is available free of charge
References
(1) Review: Nising, C. F.; Bra¨se, S. Chem. Soc. ReV. 2008, 37, 1218.
(2) Reviews: (a) Tang, Y.; Oppenheimer, J.; Song, Z.-L.; You, L.-F.; Zhang,
X.-J.; Hsung, R. P. Tetrahedron 2006, 62, 10785. (b) Shi, Y.-L.; Shi, M.
Org. Biomol. Chem. 2007, 5, 1499.
Scheme 2. Asymmetric Synthesis of Cleroindicins
(3) (a) Govender, T.; Hojabri, L.; Matloubi, M. F.; Arvidsson, P. I. Tetrahedron:
Asymmetry 2006, 17, 1763. (b) Kano, T.; Tanaka, Y.; Maruoka, K.
Tetrahedron 2007, 63, 8658. (c) Sunde´n, H.; Ibrahem, I.; Zhao, G.-L.;
Eriksson, L.; Co´rdova, A. Chem.sEur. J. 2007, 13, 574. (d) Bertelsen, S.;
Dine´r, P.; Johansen, R. L.; Jørgensen, K. A. J. Am. Chem. Soc. 2007, 129,
1536. (e) Li, H.; Wang, J.; E-Nunu, T.; Zu, L.-S.; Jiang, W.; Wei, S.-H.;
Wang, W. Chem. Commun. 2007, 507. (f) Zu, L.-S.; Zhang, S.-L.; Xie,
H.-X.; Wang, W. Org. Lett. 2009, 11, 1627. (g) Reyes, E.; Talavera, G.;
Vicario, J. L.; Bad´ıa, D.; Carrillo, L. Angew. Chem., Int. Ed. 2009, 48,
5701. (h) Kotame, P.; Hong, B.-C.; Liao, J.-H. Tetrahedron Lett. 2009,
50, 704.
(4) Biddle, M. M.; Lin, M.; Scheidt, K. A. J. Am. Chem. Soc. 2007, 129, 3830.
(5) (a) Sekino, E.; Kumamoto, T.; Tanaka, T.; Ikeda, T.; Ishikawa, T. J. Org.
Chem. 2004, 69, 2760. (b) Dittmer, C.; Raabe, G.; Hintermann, L. Eur. J.
Org. Chem. 2007, 5886. (c) Saito, N.; Ryoda, A.; Nakanishi, W.;
Kumamoto, T.; Ishikawa, T. Eur. J. Org. Chem. 2008, 2759. (d) Merschaert,
A.; Delbeke, P.; Daloze, D.; Dive, G. Tetrahedron Lett. 2004, 45, 4697.
(6) Wang, L.-J.; Liu, X.-H.; Dong, Z.-H.; Fu, X.; Feng, X.-M. Angew. Chem.,
Int. Ed. 2008, 47, 8670.
(7) Reviews: (a) Garc´ıa-Urdiales, E.; Alfonso, I.; Gotor, V. Chem. ReV. 2005,
105, 313. (b) Studer, A.; Schleth, F. Synlett 2005, 3033. Recent examples: (c)
Mori, K.; Katoh, T.; Suzuki, T.; Noji, T.; Yamanaka, M.; Akiyama, T.
Angew. Chem., Int. Ed. 2009, 48, 9652. (d) Sunasee, R.; Clive, D. L. J.
Chem. Commun. 2010, 701.
As a further demonstration of the utility of the dearomatization/
desymmetrization process, we developed concise and efficient total
syntheses of cleroindicins C, D, and F, natural products isolated
from Clerodendum indicum, a plant used in China to treat malaria
and rheumatism.12 Despite extensive synthetic efforts on their total
synthesis, there have been only limited reports on their enantiose-
lective synthesis.13 As shown in Scheme 2, cyclohexadienone 8
was readily prepared through oxidative dearomatization of com-
mercially available 4-(2-hydroxyethyl)phenol (7) mediated by
oxone.13e With 10 mol % (S)-3h, cyclohexadienone 8 underwent
the intramolecular oxo-Michael reaction smoothly with 80% ee,
affording cleroindicin D in 27% yield (three steps) after successive
epoxidation and reduction by aluminum amalgam. In addition,
intramolecular oxo-Michael addition of 8 and reduction by P(OPh)3
furnished cleroindicin F in 57% yield and 80% ee. Further
hydrogenation of cleroindicin F afforded cleroindicin C in 94%
yield (81% ee). The physical data for all these synthetic compounds
matched those previously reported.13d
(8) Imbos, R.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc. 2002, 124,
184.
(9) Liu, Q.; Rovis, T. J. Am. Chem. Soc. 2006, 128, 2552.
(10) (a) Hayashi, Y.; Gotoh, H.; Tamura, T.; Yamaguchi, H.; Masui, R.; Shoji,
M. J. Am. Chem. Soc. 2005, 127, 16028. (b) Vo, N. T.; Pace, R. D. M.;
O’Hara, F.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 404.
(11) Reviews: (a) Akiyama, T. Chem. ReV. 2007, 107, 5744. (b) Yu, X.; Wang,
W. Chem.sAsian J. 2008, 3, 516. (c) Terada, M. Chem. Commun. 2008,
4097. (d) Adair, G.; Mukherjee, S.; List, B. Aldrichimica Acta 2008, 41,
31.
(12) (a) Tian, J.; Zhao, Q.-S.; Zhang, H.-J.; Lin, Z.-W.; Sun, H.-D. J. Nat. Prod.
1997, 60, 766. (b) Cheng, H.-H.; Wang, H.-K.; Ito, J.; Bastow, K. F.;
Tachibana, Y.; Nakanishi, Y.; Xu, Z.; Luo, T.-Y.; Lee, K.-H. J. Nat. Prod.
2001, 64, 915.
(13) (a) Honzumi, M.; Kamikubo, T.; Ogasawara, K. Synlett 1998, 1001. (b)
Canto, M.; deMarch, P.; Figueredo, M.; Font, J.; Rodriguez, S.; Alarez-
Larena, A.; Piniella, J. F. Tetrahedron: Asymmetry 2002, 13, 455. (c) You,
Z.; Hoveyda, A. H.; Snapper, M. L. Angew. Chem., Int. Ed. 2009, 48, 547.
(d) Wenderski, T. A.; Huang, S.-L.; Pettus, T. R. R. J. Org. Chem. 2009,
74, 4104. (e) Barradas, S.; Carren´o, M. C.; Gonza´lez-Lo´pez, M.; Latorre,
A.; Urbano, A. Org. Lett. 2007, 9, 5019.
JA100207S
9
J. AM. CHEM. SOC. VOL. 132, NO. 12, 2010 4057