Table 2 MNP-1-PW-A catalyzed aldol reaction of acetonea
realized via non-covalent assembly with POMs as a non-
covalent anchor. The resulted non-covalently assembled
catalyst could be reused up to 11 times with essentially no
loss of activity and enantioselectivity.
We gratefully acknowledge the Natural Science Foundation of
China (NSFC 20972163 and 21025208), MOST (2011CB808600)
and CAS for financial support.
Entry
R
t/h
Yieldb (%)
ee (%)c
1
2
3
4
5
6
2-NO2C6H4
3-NO2C6H4
4-CF3C6H4
4-CNC6H4
4-ClC6H4
12
12
30
30
48
48
83
87
81
80
72
77
89
89
90
87
87
88
Notes and references
1 For reviews, see: (a) A.-H. Lu, E. L. Salabas and F. Schuth, Angew.
Chem., Int. Ed., 2007, 46, 1222; (b) J. Fan and Y. Gao, J. Exp.
Nanosci., 2006, 1, 457; (c) Y.-W. Jun, J.-S. Choi and J. Cheon,
Chem. Commun., 2007, 1203; (d) R. Banerjee, Y. Katsenovich,
L. Lagos, M. Mclintosh, X. Zhang and C.-Z. Li, Curr. Med.
Chem., 2010, 17, 3120.
2-BrC6H4
a
Reaction conditions: Catalyst (5 mol%), acetone (0.20 mL), aldehyde
b
c
(0.25 mmol). Isolated yield. Determined by chiral HPLC.
cyclohexanone and cyclopentanone also worked very well in
this catalytic system (Table 3). For comparison, the results
obtained from the same reactions using POM-chiral amine
hybrid PW-A are also listed in Table 3 (entries 1 vs. 2). The
magnetic POM supported catalyst MNP-1-PW-A showed
slightly higher stereoselectivity and enantioselectivity albeit
with a little loss of activity.
2 For recent reviews, see: (a) V. Polshettiwar, R. Luque, A. Fihri,
H. Zhu, M. Bouhrara and J.-M. Basset, Chem. Rev., 2011,
111, 3036; (b) K. V. S. Ranganath and F. Glorius, Catal. Sci.
Technol., 2011, 1, 13; (c) S. Shylesh, V. Schunemann and
¨
W. R. Thiel, Angew. Chem., Int. Ed., 2010, 49, 3428;
(d) A. Schatz, O. Reiser and W. J. Stark, Chem.–Eur. J., 2010,
16, 8950; (e) Y. Zhu, L. P. Stubbs, F. Ho, R. Liu, C. P. Ship,
J. A. Maguire and N. S. Hosmane, ChemCatChem, 2010, 2, 365;
(f) C. W. Lim and I. S. Lee, Nano Today, 2010, 5, 412.
The recyclability of MNP-1-PW-A was examined using the
model reaction between acetone and 4-nitrobenzylaldehyde.
The process of the catalyst recycling is the same as the MNP-1-
PW in the Friedel–Crafts reaction. To our delight, the non-
covalently assembled magnetic chiral amine catalyst showed
excellent reusabilities. The yield and enantioselectivity was
maintained at similar level even after 11 cycles (Fig. 3a), which
is significantly improved comparing with POM supported
chiral amines. The TEM image of the catalyst after 10 recycles
indicated that the catalyst is quite robust and no significant
aggregation was found (Fig. 3b).
3 For recent examples, see: (a) B. Karimi and E. Farhangi, Chem.–Eur.
J., 2011, 17, 6056; (b) P. Riente, C. Mendoza and M. A. Pericas,
´
J. Mater. Chem., 2011, 21, 7350; (c) X. X. Zheng, S. Z. Luo, L. Zhang
and J.-P. Cheng, Green Chem., 2009, 11, 455; (d) B. G. Wang,
B. C. Ma, Q. Wang and W. Wang, Adv. Synth. Catal., 2010,
352, 2923; (e) S. Z. Luo, X. X. Zheng and J.-P. Cheng, Chem.
Commun., 2008, 5719; (f) S. Z. Luo, X. X. Zheng, H. Xu, X. L. Mi,
L. Zhang and J.-P. Cheng, Adv. Synth. Catal., 2007, 349, 2431.
4 For
a recent non-covalent immobilization on MNPs, see:
S. Wittmann, A. Shatz, R. N. Grass, W. J. Stark and O. Reiser,
¨
Angew. Chem., 2010, 122, 1911 (Angew. Chem., Int. Ed., 2010,
49, 1867).
5 For reviews, see: (a) I. V. Kozhevnikov, Catalysis by Polyoxo-
metalates, Wiley, Chichester, UK, 2002; (b) R. Neumann, In
In summary, we have successfully developed, for the first
time, a novel type of non-covalently immobilized POM catalysts
using magnetic nanoparticles as supports. These immobilized
acid catalysts showed excellent catalytic capabilities in Friedel–Crafts
reactions of indoles and could be reused for at least 11 times.
In addition, the immobilization of chiral amines on MNPs was
Modern Oxidation Methods, ed. J. E. Backvall, Wiley-VCH, Wein-
¨
heim, 2004, pp. 223–251; (c) C. L. Hill, In Comprehensive Coordi-
nation Chemistry II, ed. A. G. Wedd, Elsevier, Oxford, 2004, vol. 4,
pp. 679–759; (d) I. V. Kozhevnikov, Chem. Rev., 1998, 98, 171;
(e) N. Mizuno and M. Misono, Chem. Rev., 1998, 98, 199;
(f) M. Sadakane and E. Steckhan, Chem. Rev., 1998, 98, 219;
(g) T. Ueda and H. Kotsuki, Heterocycles, 2008, 76, 73.
6 For recent applications of POMs supported catalysis, see:
(a) C. Boglio, G. Lemiere, B. Hasenknopf, S. Thorimbert,
E. Lacote and M. Malacria, Angew. Chem., 2006, 118,
3402–3405 (Angew. Chem., Int. Ed., 2006, 45, 3324);
(b) R. Augustine, S. Tanielyan, S. Anderson and H. Yang, Chem.
Commun., 1999, 1257; (c) R. L. Augustine, P. G. N. Mahata,
C. Reyes and S. K. Tanielyan, J. Mol. Catal. A: Chem., 2004,
216, 189.
Table 3 MNP-1-PW-A catalyzed aldol reaction of various aldol
donorsa
7 For a recent review of non-covalent immobilization of organo-
catalysts, see: (a) L. Zhang, S. Z. Luo and J.-P. Cheng, Catal. Sci.
Technol., 2011, 1, 507. For non-covalently supported asymmetric
organocatalysis with POMs, see: (b) S. Z. Luo, J. Y. Li, H. Xu,
L. Zhang and J.-P. Cheng, Org. Lett., 2007, 9, 3675; (c) J. Y. Li,
S. S. Hu, S. Z. Luo and J.-P. Cheng, Eur. J. Org. Chem., 2009, 132;
(d) J. Y. Li, S. Z. Luo and J.-P. Cheng, J. Org. Chem., 2009,
74, 1747; (e) J. Y. Li, X. Li, P. X. Zhou, L. Zhang, S. Z. Luo and
J.-P. Cheng, Eur. J. Org. Chem., 2009, 4486.
8 Y. Izumi, K. Urabe and M. Onaka, Zeolite, Clay and Heteropoly
Acid In Organic Reactions, Kodansha/VCH, Tokyo, 1992, p. 99.
9 M. Shokouhimehr, Y. Piao, J. Kim, Y. Jang and T. Hyeon, Angew.
Chem., Int. Ed., 2007, 46, 7039.
10 The use of 3 mol% of catalyst (MNP-1-PW) has also been
examined in the Friedel–Crafts reaction, showing relatively lower
yield in 15 h but still good recyclability: 1st run, 78% yield; 2nd
run, 73% yield; 3rd run, 75% yield.
11 MNP-2-PW-A demonstrated similar performance in the aldol
reaction and the results are listed in Tables S4 and S5 (ESIw).
Entry
n
R
t/h Yieldb (%) syn/antic
eed (%)
1
1
1
1
1
1
1
2
2
2
2
2
4-NO2C6H4
4-NO2C6H4
2-NO2C6H4
3-NO2C6H4
4-CF3C6H4
4-ClC6H4
2-NO2C6H4
3-NO2C6H4
4-NO2C6H4
4-CF3C6H4
4-ClC6H4
5
6
5
97
86
97
96
88
86
98
97
97
93
92
6 : 94
23 : 77
24 : 76
16 : 84
17 : 83
20 : 80
13 : 87
14 : 86
14 : 86
13 : 87
17 : 83
97
95
98
98
97
96
99
98
97
98
98
2e
3
4
5
6
7
8
9
10
11
5
12
48
8
8
6
11
48
a
Reaction conditions: Catalyst (5 mol%), ketone (0.20 mL), aldehyde
b
(0.25 mmol). Isolated yield. Determined by chiral HPLC. Deter-
e
mined by chiral HPLC. PW-A (1 mol%) was employed.
c
d
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 12325–12327 12327