5080
X.-L. Yun et al. / Tetrahedron Letters 53 (2012) 5076–5080
6835–6837; (c) Pan, D.; Chen, A.; Su, Y.; Zhou, W.; Li, S.; Jia, W.; Xiao, J.; Liu, Q.;
Zhang, L.; Jiao, N. Angew. Chem., Int. Ed. 2008, 47, 4729–4732; (d) Wan, X.; Ma,
Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z. J. Am. Chem. Soc. 2006, 128, 7416–
7417; (e) Aragon, P.-J.; Chezal, J.-M.; Chavignon, O.; Teulade, J.-C.; Blache, Y.
Heterocycles 2003, 60, 551–561; (f) Laschober, R.; Kappe, T. Synthesis 1990,
387–388; (g) Mckillop, A.; Kemp, D. Tetrahedron 1989, 45, 3299–3306.
12. For selected reviews on screening the optimal conditions for palladium-
catalyzed synthesis of carbazolones, see: (a) Koutentis, P. A.; Loizou, G.; Lo Re,
D. J. Org. Chem. 2011, 76, 5793–5802; (b) Shi, Z.; Ding, S.; Cui, Y.; Jiao, N. Angew.
Chem., Int. Ed. 2009, 48, 7895–7898; (c) Beccalli, E. M.; Broggini, G.; Martinelli,
M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318–5365; (d) Zeni, G.; Larock, R. C.
Chem. Rev. 2006, 106, 4644–4680; (e) Wan, X.; Xing, D.; Fang, Z.; Li, B.; Zhao, F.;
Zhang, K.; Yang, L.; Shi, Z. J. Am. Chem., Soc. 2006, 128, 12046–12047; (f) Lane, B.
S.; Brown, M. A.; Sames, D. J. Am. Chem. Soc. 2005, 127, 8050–8057; (g)
Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem. Int. Ed. 2005, 44, 4490–
4527; (h) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104, 3079–3159;
(i) Ma, S.; Jiao, N.; Zhao, S.; Hou, H. J. Org. Chem. 2002, 67, 2837–2847; (j)
Edmondson, S. D.; Mastracchio, A.; Parmee, E. R. Org. Lett. 2000, 2, 1109–1112;
(k) Lorsbach, B. A.; Kurth, M. J. Chem. Rev. 1999, 99, 1549–1581.
method enables the synthesis of carbazolone skeleton containing a
nitro-group substituted benzenoid ring.
Acknowledgments
Y. Du acknowledges the National Natural Science Foundation of
China (#21072148) and Cultivation Foundation (B) for Young Fac-
ulty of Tianjin University (TJU-YFF-08B68) for financial support.
Supplementary data
Supplementary data (list of new compounds along with their
yield and copies of 1H NMR and 13C NMR spectra) associated with
InChiKeys of the most important compounds described in this
article.
13. Siamaki, A. R.; Khder, A. E. R. S.; Abdelsayed, V.; El-Shall, M. S.; Gupton, B. F. J.
Catal. 2011, 279, 1–11.
14. (a) Neumann, J. J.; Rakshit, S.; Droege, T.; Glorius, F.; Wuertz, S. Chem. Eur. J.
2011, 17, 7298–7303; (b) Weng, B.; Liu, R.; Li, J.-H. Synthesis 2010, 2926–2930.
15. The dehalogenative aromatization of the nitro-substituted cyclohexenone is
proposed to undergo the following pathway: In the presence of base, substrate
3g or 3h is isomerized into intermediate A, which is further tautomerized into
enol B. Finally, dehalogenation occurs to give the phenol compound 4g0 or 4h0.
For an example describing the similar formation of intermediate A, see:
Hayashi, Y.; Shoji, M.; Kishida, S. Tetrahedron Lett. 2005, 46, 681–685.
References and notes
1. (a) Prakash, S. R.; Cable, K. M.; Correa, I. D.; Fellows, I.; Montgomery, S.;
Newman, J. J.; Waterhouse, I.; Wells, G. N.; Sutherland, D. R. J. Labelled Compd.
Radiopharm. 1995, 36, 993–1007; (b) Yan, S.; Wu, H.; Wu, N.; Jiang, Y. Synlett
2007, 2699–2702.
2. (a) Sissouma, D.; Maingot, L.; Collet, S.; Guingant, A. J. Org. Chem. 2006, 71,
8384–8389; (b) Knölker, H.-J. Top. Curr. Chem. 2005, 244, 115; (c) Sissouma, D.;
Collet, S. C.; Guingant, A. Y. Synlett 2004, 2612–2614; (d) Knölker, H.-J.; Reddy,
K. R. Heterocycles 2003, 60, 1049–1052; (e) Bouaziz, Z.; Nebois, P.; Poumaroux,
A.; Fillion, H. Heterocycles 2000, 52, 977–999; (f) Chakraborty, D. P.;
Chowdhury, B. K. J. Org. Chem. 1968, 33, 1265–1268.
3. (a) Barta, T. E.; Veal, J. M.; Rice, J. W.; Partridge, J. M.; Fadden, R. P.; Ma, W.;
Jenks, M.; Geng, L.; Hanson, G. J.; Huang, K. H.; Barabasz, A. F.; Foley, B. E.; Otto,
J.; Hall, S. E. Bioorg. Med. Chem. Lett. 2008, 18, 3517–3521; (b) Masaguer, C. F.;
Formoso, E.; Ravin´ a, E.; Tristán, H.; Loza, M. I.; Rivas, E.; Fontenla, J. A. Bioorg.
Med. Chem. Lett. 1998, 8, 3571–3576.
O
O
OH
I
I
I
Et3N
O2N
O2N
O2N
N
R
N
R
N
R
B
A
3g or 3h
OH
Et3N
- HI
4g'
(4-NO2, R = 4-NO2Ph) 52%
4h' (4-NO2, R = Ph) 47%
O2N
N
R
4. (a) Sato, M.; Suzuki, Y.; Yamada, F.; Somei, M. Heterocycles 2010, 80, 1027–
1045; (b) McErlean, C. S. P.; Sperry, J.; Blake, A. J.; Moody, C. J. Tetrahedron 2007,
63, 10963–10970; (c) Li, X.; Vince, R. Bioorg. Med. Chem. Lett. 2006, 14, 2942–
2955; (d) Romeo, G.; Materia, L.; Pittalà, V.; Modica, M.; Salerno, L.; Siracusa,
M.; Russo, F.; Minneman, K. P. Bioorg. Med. Chem. Lett. 2006, 14, 5211–5219; (e)
16. One reviewer has proposed the following alternative mechanism, which
involves carbopallation of the aromatic ring followed by anti-elimination of
HPdI. For a representative example, see: Toyota, M.; Ilangovan, A.; Okamoto, R.;
Masaki, T.; Arakawa, M.; Ihara. M. Org. Lett. 2002, 4, 4293–4296.
ˇ
Desmaele, D.; DAngelo, J. J. Org. Chem. 1994, 59, 2292–2303.
5. Barta, T. E.; Barabasz, A. F.; Foley, B. E.; Geng, L.; Hall, S. E.; Hanson, G. J.; Jenks,
M.; Ma, W.; Rice, J. W.; Veal, J. Bioorg. Med. Chem. Lett. 2009, 19, 3078–3780.
6. (a) Bi, W.; Yun, X.; Fan, Y.; Qi, X.; Du, Y.; Huang, J. Synlett 2010, 2899–2904; (b)
Knölker, H.-J. Chem. Lett. 2009, 8–13; (c) Würtz, S.; Rakshit, S.; Neumann, J. J.;
Dröge, T.; Glorius, F. Angew. Chem. Int. Ed. 2008, 47, 7230–7233; (d) Knölker, H.-
J.; Reddy, K. R. Chem. Rev. 2002, 102, 4303–4427; (e) Mithani, S.; Weeratunga,
G.; Taylor, N. J.; Dmitrienko, G. I. J. Am. Chem. Soc. 1994, 116, 2209–2210.
7. (a) Aragon, P.-J.; Yapi, A.-D.; Pinguet, F.; Chezal, J.-M.; Teulade, J.-C.; Blache, Y.
Chem. Pharm. Bull. 2007, 55, 1349–1355; (b) Tietcheu, C.; Garcia, C.; Gardette,
D.; Dugat, D.; Gramain, J. J. Heterocycl. Chem. 2002, 39, 965–973.
I
I
O
O
Pd
O
Pd
H
carbopalladation
- HPdI
R2
N
N
R2
R2
N
R1
R1
R1
8. For selected examples of synthesis of carbazolones via Fischer synthesis, see (a)
Xu, D.-Q.; Wu, J.; Luo, S.-P.; Zhang, J.-X.; Wu, J.-Y.; Du, X.-H.; Xu, Z.-Y. Green
Chem. 2009, 11, 1239–1246; (b) Kudzma, L. V. Synthesis 2003, 1661–1666; (c)
Rodriguez, J.-G.; Temprano, F.; Esteban-Calderon, C.; Martinez-Ripoll, M. J.
Chem. Soc. Perkin Trans. 1 1989, 2117–2122; (d) Baldwin, J. E.; Tzodikov, N. R. J.
Org. Chem. 1977, 42, 1878–1883; (e) Sucrow, W.; Slopianka, M.; Mentzel, C.
Chem. Ber. 1973, 106, 745–750.
9. For selected examples of synthesis of carbazolones via Heck reaction, see: (a)
Janreddy, D.; Kavala, V.; Bosco, J. W. J.; Kuo, C.-W.; Yao, C.-F. Eur. J. Org. Chem.
2011, 12, 2360–2365; (b) Sorensen, U. S.; Pombo-Villar, E. Helv. Chim. Acta
2004, 87, 82–89; (c) Masaguer, C. F.; Ravina, E.; Fontenla, J. A.; Brea, J.; Tristan,
H.; Loza, M. I. Eur. J. Med. Chem. 2000, 35, 83–95; (d) Wang, H.-M.; Chou, H.-L.;
Chen, L.-C. J. Chin. Chem. Soc. Taip. 1995, 42, 593–595; (e) Sakamoto, T.; Nagano,
T.; Kondo, Y.; Yamanaka, H. Synthesis 1990, 215–218; (f) Iida, H.; Yuasa, Y.;
Kibayashi, C. J. Org. Chem. 1980, 45, 2938–2942.
17. For selected examples of electrophilic aromatic palladation, see: (a) Campeau,
L.-C.; Parisien, M.; Jean, A.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 581–590; (b)
Tunge. J. A.; Foresee, L. N. Organometallics 2005, 24, 6440–6444.; (c) Park, C.-H.;
Ryabova, V.; Seregin, I. V.; Sromek, A. W.; Gevorgyan, V. Org. Lett. 2004, 6,
1159–1162; (d) Glover, B.; Harvey, K. A.; Liu, B.; Sharp, M. J.; Tymoschenko, M.
F. Org. Lett. 2003, 5, 301–304; (e) González, J. J.; García, N.; Gómez-Lor, B.;
Echavarren, A. M. J. Org. Chem. 1997, 62, 1286–1291; (f) Li, C.-S.; Jou, D.-C.;
Cheng, C.-H. Organometallics 1993, 12, 3945–3954.
18. General procedure for the Synthesis of N-substituted carbazolones 4a–m and 6a–
b: A mixture of
a-iodo enaminones 3a–m, 5a–b (0.26 mmol), Pd2(dba)3 (5 mol
%), Et3N (0.65 mmol), and anhydrous DMF (300
lL) was stirred at 80 °C under
microwave (400 W) for 30 min. After the consumption of the starting material,
the mixture was cooled to room temperature, filtered to remove the solid
materials. The filtrate was extracted with EtOAc (20 mL ꢀ 3). The organic phase
was combined, dried with anhydrous Na2SO4, and evaporated to remove the
solvent. The residue was purified by flash column chromatography (EtOAc/PE)
on silica gel to give the desired products 4a–m, 6a–b.
10. Chen, Y.; Ju, T.; Wang, J.; Yu, W.; Du, Y.; Zhao, K. Synlett 2010, 231–
234.
11. (a) Shi, Z.; Zhang, B.; Cui, Y.; Jiao, N. Angew. Chem., Int. Ed. 2010, 49, 4036–4041;
(b) Jin, Y. L.; Kim, S.; Kim, Y. S.; Kim, S.-A.; Kim, H. S. Tetrahedron Lett. 2008, 49,