A. Wang et al. / Bioorg. Med. Chem. Lett. 20 (2010) 1432–1435
1435
S
creased 11%, 10%, and 28%, respectively. High-fat fed hamsters
were also treated with 6a orally for 5 days. At 10 and 30 mg/kg
doses of 6a, the hamsters plasma HDL-C was increased 9% and 16%.
Br
Br
Br
1. tetradecane, 207oC
2. NaOH, MeOH, H2O
O
NMe2
OH
Me2N
Cl
S
DABCO, DMF
NO2
NO2
47, 100%
As we expected, 6a displayed higher aqueous solubility (11
mL at pH 2.0, and 2.7 g/mL at pH 7.4) than its C-analog, (2R,
3,4-dihydro-2-[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-5-[3-(triflu-
oromethoxy)-phenyl]- -(trifluoromethyl)-1(2H)-quinolineethanol
(<1 g/mL at pH 2.0, and <1
g/mL at pH 7.4).20,21
lg/
l
a
S)-
O
Br
O
Br
1.
OC2F4H
a
SH
S
NH2
OCF2CF2H
l
l
In conclusion, we have discovered 2,3-dihydro-3,8-diph-
enylbenzo[1,4]oxazines as a novel class of potent CETP inhibitors.
The most potent compound 6a exhibited favorable pharmacoki-
netic profile with good oral bioavailability in rat (F = 53%). It was
a weak inhibitor of P450 isozymes and had long human liver
microsome stability (t1/2 = 62 min). It increased HDL-C in human
CETP transgenic mice and high-fat fed hamsters. Its aqueous solu-
bility was also improved.
KOH, MeOH
2. Pd/C, H2, EtOAc
NO2
48, 84%
49, 72%
OCF3
Br
S
NaBH(OAc)3
TFA, CH2Cl2
B(OH)2
OCF2CF2H
N
Pd(PPh3)2Cl2
K2CO3
H
50, 76%
OCF3
OCF3
Acknowledgment
O
We thank Jef Proost for chiral HPLC resolution of compound 5.
References and notes
CF3
S
S
N
Yb(OTf)3
O(CF2)2H
O(CF2)2H
N
H
F3C
1. Assmann, G.; Schulte, H.; von Eckardstein, A.; Huang, Y. Atherosclerosis 1996,
124, S11.
2. Castelli, W. P.; Garrison, R. J.; Wilson, P. W.; Abbott, R. D.; Kalousdian, S.;
Kannel, W. B. J. Am. Med. Assoc. 1986, 256, 2835.
51, 89%
52 (higher Rf), 8%
OH
Scheme 3.
3. Kannel, W. B. Am. J. Cardiol. 1995, 76, 69C.
4. Bruce, C.; Chouinard, R. A., Jr.; Tall, A. R. Annu. Rev. Nutr. 1998, 18, 297.
5. Yamashita, S.; Sakai, N.; Hirano, K.-I.; Ishigami, M.; Maruyama, T.; Nakajima, N.;
Matsuzawa, Y. Front. Biosci 2001, 6, D366.
6. Krause, B. R.; Auerbach, B. J. Curr. Opin. Invest. Drugs 2001, 2, 375.
7. Assmann, G.; Nofer, J. R. Annu. Rev. Med. 2003, 54, 321.
8. Tall, A. R. J. Lipid Res. 1993, 34, 1255.
It seems that CETP prefers inhibitors with lipophilic groups in
the molecules, therefore, it would be interesting to replace the O-
atom in the morpholine ring of 6 with S-atom. The synthesis of
S-analog 52 is outlined in Scheme 3. 2-Bromo-6-nitrobenzenethiol
48 was prepared in three steps in 84% yield by first reaction of 2-
bromo-6-nitrophenol with N,N-dimethylcarbamoyl chloride to
thiocarbamate 47, then O- to S-rearrangement occurred over
200 °C followed by hydrolysis with NaOH. The rest of reaction se-
quence to target 52 was similar to that of 6. The inhibitory potency
of 52 (IC50 = 166 nM) was about fourfold lower than its O-analog 6e
(IC50 = 45 nM).
9. Lagrost, L. Biochem. Biophys. Acta 1994, 1215, 209.
10. Fielding, C. J.; Havel, R. J. J. Clin. Invest. 1996, 97, 2687.
11. Hayek, T.; Masucci-Magoulas, L.; Jiang, X. J. Clin. Invest. 1995, 96, 2071.
12. Zhong, S.; Sharp, D. S.; Grove, J. S.; Bruce, C.; Yano, K.; Curb, J. D.; Tall, A. R. J.
Clin. Invest. 1996, 97, 2917.
13. Sikorski, J. A.; Connolly, D. T. Curr. Opin. Drug Discovery Dev. 2001, 4, 602.
14. Shinkai, H.; Maeda, K.; Yamasaki, T.; Okamoto, H.; Uchida, I. J. Med. Chem. 2000,
43, 3566.
15. Kontush, A.; Guerin, M.; Chapman, M. J. Nat. Clin. Pract. Cardiovasc. Med. 2008,
5, 329.
16. Brousseau, M. E.; Schaefer, E. J.; Wolfe, M. L.; Bloedon, L. T.; Digenio, A. G.;
Clark, R. W.; Mancuso, J. P.; Rader, D. J. N. Eng. J. Med. 2004, 350, 1505.
17. Clark, R. W.; Ruggeri, R. B.; Cunningham, D.; Bamberger, M. J. J. Lipid Res. 2006,
4, 537.
18. Barter, P. J.; Caulfield, M.; Eriksson, M.; Grundy, S. M.; Kastelein, J. J. P.;
Komajda, M.; Lopez-Sendon, J.; Mosca, L.; Tardif, J. C.; Waters, D. D.; Shear, C. L.;
Revkin, J. H.; Buhr, K.; Fisher, M. R.; Tall, A. R.; Brewer, B. N. Eng. J. Med. 2007,
357, 2109.
19. Vergeer, M.; Kastelein, J. J. P. Nat. Clin. Pract. Cardiovasc. Med. 2008, 5, 302.
20. Kuo, G.-H.; Rano, T.; Pelton, P.; Demarest, K. T.; Gibbs, A. C.; Murray, W. V.;
Damiano, B. P.; Connelly, M. A. J. Med. Chem. 2009, 52, 1768.
21. Rano, T. A.; Sieber-McMaster, E.; Pelton, P. D.; Yang, M.; Demarest, K. T.; Kuo,
G.-H. Bioorg. Med. Chem. Lett. 2009, 19, 2456.
22. Kuo, G.-H.; Wang, A.; Rano, T.; Prouty, C.; Demarest, K. T.; Pelton, P. U.S. Pat.
Appl. Publ. US 2007265252 A1 20071115, 2007.
23. Sorgi, K. L.; Liu, F.; Chen, Y.; Chen, H.; Patel, M. N.; Li, X.; Wang, A.; Ballentine, S.
A.; Beauchamp, D. A.; Macphee, J.-M.; Rammeloo, T. J. L.; Vanhoegaerden, T. J.
PCT Int. Appl. WO 2008141077 A1 20081120, 2008.
Compound 6a was the most potent inhibitor prepared in this
series with IC50 = 26 nM in a CETP SPA assay and IC50 = 1.0 lM in
a human plasma 3H-CE HDL assay. In the studies of human liver
microsome cytochrome P450 inhibition assay 1A2, 2C9, 2C19,
2D6, 3A4-T, and 3A4-M, compound 6a showed no significant inhib-
itory effect on the P450 isozymes tested (IC50 >100 lM). It also dis-
played long human liver microsome stability (t1/2 = 62 min).
The pharmacokinetic (PK) profile of 6a was studied in rats orally
dosed at 10 mg/kg using sesame oil as the vehicle, and iv dosed at
2 mg/kg using 10% EtOH:10% solutol:80% D5W as the vehicle. The
oral bioavailability in rats was 53% with significant plasma expo-
sure (AUC = 19.8 lg h/mL) and slow oral absorption (Tmax = 11.5 h).
It also exhibited low systemic clearance (CL = 4.6 mL/min kg) and
low volume of distribution (Vss = 0.73 L/kg).
In vivo efficacy studies, treatment of female and male human
CETP transgenic mice on a normal chow diet with 6a orally for
5 days resulted in an increase in HDL-C. At 3, 10, and 30 mg/kg
doses of 6a, the female mice plasma HDL-C was increased 4%, 8%,
and 24%, respectively, and the male mice plasma HDL-C was in-
24. Reinhard, E. J.; Wang, J. L.; Durley, R. C.; Fobian, Y. M.; Grapperhaus, M. L.;
Hickory, B. S.; Massa, M. A.; Norton, M. B.; Promo, M. A.; Tollefson, M. B.;
Vernier, W. F.; Connolly, D. T.; Witherbee, B. J.; Melton, M. A.; Regina, K. J.;
Smith, M. E.; Sikorski, J. A. J. Med. Chem. 2003, 46, 2152.
25. Atarashi, S.; Tsurumi, H.; Fujiwara, T.; Hayakawa, I. J. Heterocycl. Chem. 1991,
28, 329.
26. Speckamp, W. N.; Moolenaar, M. J. Tetrahedron 2000, 56, 3817.