Aminal–Pyrrolidine Organocatalysts
f) H. Pellissier, Tetrahedron 2007, 63, 9267; for a special issue
on different aspects of organocatalysis, see: g) Chem. Rev. 2007,
107, 5413; for selected reviews of enamine catalysis, see: h)
D. W. C. MacMillan, Nature 2008, 455, 304; i) B. List, Acc.
Chem. Res. 2004, 37, 548; j) B. List, Chem. Commun. 2006,
819; k) A. Erkkila, I. Majander, P. M. Pihko, Chem. Rev. 2007,
107, 5416; l) S. Mukherjee, J. W. Yang, S. Hoffmann, B. List,
Chem. Rev. 2007, 107, 5471; m) P. Melchiorre, M. Marigo, A.
Carlone, G. Bartoli, Angew. Chem. Int. Ed. 2008, 47, 6138; n)
S. B. Tsogoeva, Eur. J. Org. Chem. 2007, 1701; o) S. Sulzer-
Mossé, A. Alexakis, Chem. Commun. 2007, 3123; p) D. Almasi,
D. A. Alonso, C. Najera, Tetrahedron: Asymmetry 2007, 18,
299; q) J. L. Vicario, B. Dolores, L. Carrillo, Synthesis 2007,
2065; r) S. Bertelsen, K. A. Jørgensen, Chem. Soc. Rev. 2009,
38, 2178.
For selected articles on the enamine-catalyzed, asymmetric
conjugate addition of aldehydes and ketones to nitro olefins,
see: a) B. List, P. Pojarliev, H. J. Martin, Org. Lett. 2001, 3,
2423; b) J. M. Betancort, C. F. Barbas III, Org. Lett. 2001, 3,
3737; c) A. Alexakis, O. Andrey, Org. Lett. 2002, 4, 3611; d)
D. Enders, A. Seki, Synlett 2002, 26; e) O. Andrey, A. Alexakis,
A. Tomassini, G. Bernardinelli, Adv. Synth. Catal. 2004, 346,
1147; f) W. Wang, J. Wang, H. Li, Angew. Chem. Int. Ed. 2005,
44, 1369; g) C. Palomo, S. Vera, A. Mielgo, E. Gómez-Bengoa,
Angew. Chem. Int. Ed. 2006, 45, 5984; h) J. Wang, H. Li, B.
Lou, L. Zu, H. Guo, W. Wang, Chem. Eur. J. 2006, 12, 4321;
i) E. Reyes, J. L. Vicario, D. Badia, L. Carillo, Org. Lett. 2006,
8, 6135; j) H. Huang, E. N. Jacobsen, J. Am. Chem. Soc. 2006,
128, 7170; k) M. P. Lalonde, Y. Chen, E. N. Jacobsen, Angew.
Chem. Int. Ed. 2006, 45, 6366; l) D. Enders, M. R. M. Hüttl,
C. Grondal, G. Raabe, Nature 2006, 441, 861; m) T. Mandal,
C.-G. Zhao, Tetrahedron Lett. 2007, 48, 5803; n) S. H.
McCooey, S. J. Connon, Org. Lett. 2007, 9, 599; o) M. Wiesner,
J. D. Revell, H. Wennemers, Angew. Chem. Int. Ed. 2008, 47,
1871; p) S. Belot, A. Massaro, A. Tenti, A. Mordini, A.
Alexakis, Org. Lett. 2008, 10, 4557; q) S. Belot, S. Sulzer-
Mosse, S. Kehrli, A. Alexakis, Chem. Commun. 2008, 4694; r)
Y. Hayashi, T. Itoh, M. Ohkubo, H. Ishikawa, Angew. Chem.
Int. Ed. 2008, 47, 4722; s) Y. Chi, L. Guo, N. A. Kopf, S. H.
Gellman, J. Am. Chem. Soc. 2008, 130, 5608; t) M. Wiesner,
J. D. Revell, S. Tonazzi, H. Wennemers, J. Am. Chem. Soc.
2008, 130, 5610; u) S. Zhu, S. Yu, D. Ma, Angew. Chem. Int.
Ed. 2008, 47, 545; v) D. Bonne, L. Salat, J.-P. Dulcère, J. Rodri-
guez, Org. Lett. 2008, 10, 5409; w) D.-Q. Xu, A.-B. Xia, S.-P.
Luo, J. Tang, S. Zhang, J.-R. Jiang, Z.-Y. Lu, Angew. Chem.
Int. Ed. 2009, 48, 3821; x) J. M. Betancort, K. Sakthivel, R.
Thayumanavan, C. F. Barbas III, Tetrahedron Lett. 2001, 42,
4441.
alkyl), 3.11–3.21 (m, 2 H, CH2I), 3.35 (dd, CHO, J = 6.0, 2.8 Hz,
1 H, minor diastereomer), 3.43 (t, CHO, J = 7.6 Hz, 1 H, major
diastereomer), 3.87–4.01 (m, 2 H, CH2O), 4.32 (t, J = 6 Hz, 1 H,
CHSO2), 7.56–7.73 (m, 6 H, Ph), 7.92–7.95 (m, 4 H, Ph) ppm. 13C
NMR (100 MHz, CDCl3): δ = 9.8 (CH2), 29.2 (CH2), 37.9 (CH),
38.5 (CH2), 73.0 (CH2), 78.7 (CH), 82.5 (CH), 129.3 (CH), 129.7
(CH), 134.9 (CH), 137.5 (Cquat.) ppm. MS ESI: m/z = 521.3 [M +
H]+. HRMS calcd. for C19H22N3O5S2I 520.9947; found 520.9965.
General Procedure for the Michael Addition to Nitrostyrene: To a
solution of the aldehyde (2 mmol) and nitrostyrene (0.2 mmol) in
CHCl3 (0.8 mL) was added the appropriate amount of catalyst, and
the reaction mixture was stirred at room temperature. The reaction
was monitored by TLC. After the reaction was complete, aqueous
NH4Cl (2 mL) was added, and the mixture was extracted with
CH2Cl2 (3ϫ2 mL). The combined organic layers were dried with
Na2SO4 and filtered, and the solvents were evaporated. The crude
material was purified by chromatography on silica gel using cyclo-
hexane/ethyl acetate (8:2) as the eluent.
[2]
(2R)-2-Methyl-4-nitro-3-phenylbutanal (25j): 35 mg, yield 85%. The
ee was determined by SFC [Chiralpak OD-H, 2 mL/min, 200 bar,
MeOH 2%–6–1–15%, 30 °C, tR = 7.1 (2S,3R) and 7.6 (2R,3S)
1
min]. H NMR (400 MHz, CDCl3): δ = 1.02 (d, J = 7.2 Hz, 3 H,
Me), 2.75–2.84 (m, 1 H, CHMe), 3.83 (dt, J = 9.4, 5.6 Hz, 1 H,
CHPh), 4.70 (dd, J = 12.8, 9.4 Hz, 1 H, CH2NO2), 4.82 (dd, J =
12.8, 5.4 Hz, 1 H, CH2NO2), 7.17–7.21 (m, 2 H, Ph), 7.28–7.40 (m,
3 H, Ph), 9.73 (s, 1 H, CHO) ppm. Spectroscopic data are in agree-
ment with those in the literature.[19]
General Procedure for the α-Amination of Aldehydes: To a stirred
solution of diethyl azodicarboxylate (0.25 mmol) and the corre-
sponding aldehyde (0.375 mmol) in CH2Cl2 (0.25 mL) was added
the aminal–pyrrolidine catalyst, and the solution was stirred at
room temperature until the yellow color disappeared. MeOH
(0.6 mL) was then added, followed by the slow addition (exother-
mic) of NaBH4 (3 equiv.). The reaction mixture was then stirred at
room temperature for 30 min before aqueous NaOH (0.5 ,
2.5 mL) was added. After 2 h of stirring at room temperature, the
solvent was evaporated. The residue was suspended in water
(3 mL), and the mixture was extracted with CH2Cl2 (3ϫ20 mL).
The combined organic layers were then dried with Na2SO4 and
filtered, and the solvent was evaporated. In most cases, the prod-
ucts were of sufficient purity without further silica gel chromatog-
raphy.
[3]
For the pioneering use of -proline as a catalyst, see: a) U.
Eder, G. Sauer, R. Wiechert, Angew. Chem. Int. Ed. Engl. 1971,
10, 496; b) Z. G. Hajos, R. Parrich, J. Org. Chem. 1974, 39,
1615; c) B. List, R. A. Lerner, C. F. Barbas III, J. Am. Chem.
Soc. 2000, 122, 2395; for a review of the aldol reaction, see: d)
G. Guillena, D. J. Ramon, Tetrahedron: Asymmetry 2006, 17,
1465.
For pioneering results and highlights, see: a) N. A. Paras,
D. W. C. MacMillan, J. Am. Chem. Soc. 2001, 123, 4370; b) G.
Lelais, D. W. C. MacMillan, Aldrichim. Acta 2006, 39, 79–87.
For leading examples and highlights, see: a) M. Marigo, T. C.
Wabnitz, D. Fielenbach, K. A. Jørgensen, Angew. Chem. Int.
Ed. 2005, 44, 794; b) M. Marigo, D. Fielenbach, A. Braunton,
A. Kjoersgaard, K. A. Jørgensen, Angew. Chem. Int. Ed. 2005,
44, 3703; c) Y. Hayashi, H. Gotoh, T. Hayashi, M. Shoji, An-
gew. Chem. Int. Ed. 2005, 44, 4212; d) J. Franzen, M. Marigo,
D. Fielenbach, T. C. Wabnitz, A. Kjaersgaard, K. A.
Jørgensen, J. Am. Chem. Soc. 2005, 127, 18296; e) C. Palomo,
A. Mielgo, Angew. Chem. Int. Ed. 2006, 45, 7876; f) A. Mielgo,
C. Palomo, Chem. Asian J. 2008, 3, 922.
Ethyl (S)-4-Isopropyl-2-oxooxazolidin-3-ylcarbamate (27f): 45 mg,
yield 83%. The ee was determined by GC [Chirasil Dex Cβ column,
150 °C for 30 min, 1 °C/min to 170 °C, then holding for 5 min, tR
= 43.2 (S) and 45.3 (R) min]. 1H NMR (400 MHz, CDCl3): δ =
0.93 (t, J = 2.4 Hz, 6 H, CH3), 1.28 (t, J = 6.8 Hz, 3 H, CH3),
2.02–2.06 (m, 1 H, CHMe), 3.91–4.09 (m, 2 H, CH2CO2), 4.18–
4.24 (m, 3 H, CH2O and CHN), 4.38–4.41 (m, 1 H, CH2O), 6.77
(br. s, 1 H, NH) ppm. Spectroscopic data are in agreement with
those in the literature.[17]
[4]
[5]
Supporting Information (see footnote on the first page of this arti-
cle): Full experimental procedures and catalyst synthesis.
[1] For selected general reviews on organocatalysis, see: a) P. I.
Dalko, L. Moisan, Angew. Chem. Int. Ed. 2004, 43, 5138; b)
G. Guillena, D. J. Ramon, Tetrahedron: Asymmetry 2006, 17,
1465; c) M. J. Gaunt, C. C. C. Johansson, A. Mc Nally, N. T.
Vo, Drug Discovery Today 2007, 12, 8; d) R. M. De Figueiredo,
M. Christmann, Eur. J. Org. Chem. 2007, 2575; e) P. I. Dalko,
Enantioselective Organocatalysis, Wiley-VCH, Weinheim, 2007;
[6]
P. Diner, A. Kjaersgaard, M. A. Lie, K. A. Jørgensen, Chem.
Eur. J. 2008, 14, 122.
Eur. J. Org. Chem. 2010, 927–936
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
935