Page 5 of 6
Journal of the American Chemical Society
via Photo-Stevens Rearrangement. Org. Lett. 2008, 10, 5477−5480. (d)
G. L.; Nilsson, U. J.; Olofsson, B. Efficient O-Functionalization of Carbo-
hydrates with Electrophilic Reagents. Angew. Chem., Int. Ed. 2016, 55,
11226−11230. (d) Liao, J.-X.; Fan, N.-L.; Liu, H.; Tu, Y.-H.; Sun, J.-S.
Highly efficient synthesis of flavonol 5-O-glycosides with glycosyl ortho-al-
kynylbenzoates as donors. Org. Biomol. Chem. 2016, 14, 1221−1225. (e) Liu,
C.-F.; Xiong, D.-C.; Ye, X.-S. KOtBu-mediated Aromatic O-glycosylation of
1,2-Anhydrosugar and Aryl Boronic Acid. Tetrahedron Lett. 2016, 57,
1372−1374.
Mortimer, A. J. P.; Plet, J. R. H.; Obasanjo, O. A.; Kaltsoyannis, N.; Porter,
M. J. Inter- and Intramolecular Reactions of 1-deoxy-1-thio-1,6-anhy-
drosugars with α-Diazoesters: Synthesis of the Tagetitoxin Core by Photo-
chemical Ylide Rearrangement. Org. Biomol. Chem. 2012, 10, 8616−8627.
(10) Nielsen, M. M.; Pedersen, C. M. Catalytic Glycosylations in Oligo-
saccharide Synthesis. Chem. Rev. 2018, 118, 8285−8358.
1
2
3
4
5
6
7
8
(11) (a) Gillespie, R. J.; Murray-Rust, J.; Murray-Rust, P.; Porter, A. E.
A. Rhodium(II)-catalysed Addition of Dimethyl Diazomalonate to Thio-
phen: a Simple Synthesis of Thiophenium Bismethoxycarbonylmethylides
and Crystal and Molecular Structure of the Unsubstituted Methylide. J.
Chem. Soc., Chem. Commun. 1978, 83−84. (b) Ford, A.; Miel, H.; Ring, A.;
Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Modern Organic Synthesis
with α-Diazocarbonyl Compounds.Chem. Rev. 2015, 115, 9981−10080.
(12) Benito-Alifonso, D.; Galan, M. C. Brønsted- and Lewis-Acid-Cata-
lyzed Glycosylation. In Selective Glycosylations: Synthetic Methods and Ca-
talysis; Bennett, C. S., Ed. First Edition, Wiley-VCH, 2017; pp 155−172.
(13) (a)The ylide was unstable to chromatography, for NMR studies of
the crude reaction mixtures, see the Supporting Information. (b) the reac-
tion with 4-diazoisochroman-3-one 3b also succeeded to activate 1a, while
dimethyl diazomalonate 3c failed to activate 1a under similar conditions.
(14) (a) Miller, D. J.; Moody, C. J. Synthetic Applications of the O-H
Insertion Reactions of Carbenes and Carbenoids Derived from Diazocar-
bonyl and Related Diazo Compounds. Tetrahedron 1995, 51, 10811−10843.
(b) Zhu, S.-F.; Zhou, Q.-L. Transition-Metal-Catalyzed Enantioselective
Heteroatom–Hydrogen Bond Insertion Reactions. Acc. Chem. Res. 2012, 45,
1365−1377.
(15) (a) Crich, D. Mechanism of a Chemical Glycosylation Reaction.
Acc. Chem. Res. 2010, 10, 1144−1153. (b) Huang, M.; Garrett, G. E.;
Birlirakis, N.; Bohé, L.; Pratt, D. A.; Crich, D. Dissecting the Mechanisms
of a Class of Chemical Glycosylation using Primary 13C Kinetic Isotope Ef-
fects. Nature Chem. 2012, 4, 663−667. (c) Martin, A.; Arda, A.; Désiré, J.;
Martin-Mingot, A.; Probst, N.; Sinaÿ, P.; Jiménez-Barbero, J.; Thibaudeau,
S.; Blériot, Y. Catching Elusive Glycosyl Cations in a Condensed Phase with
HF/SbF5 Superacid. Nature Chem. 2016, 8, 186−191.
(16) (a) Li, Y.; Yang, Y.; Yu, B. An Efficient Glycosylation Protocol with
Glycosyl ortho-Alkynylbenzoates as Donors Under the Catalysis of
Ph3PAuOTf. Tetrahedron Lett. 2008, 49, 3604−3608. (b) Yu, B.; Sun, J.;
Yang, X. Assembly of Naturally Occurring Glycosides, Evolved Tactics, and
Glycosylation Methods. Acc. Chem. Res. 2012, 45, 1227−1236. (c) Adhikari,
S.; Li, X.; Zhu, J. Studies of S-But-3-Ynyl and Gem-Dimethyl S-But-3-Ynyl
Thioglycoside Donors in Gold-Catalyzed Glycosylations. J. Carbohydr.
Chem. 2013, 32, 336−359. (d) Mishra, B.; Neralkar, M.; Hotha, S. Stable
Alkynyl Glycosyl Carbonates: Catalytic Anomeric Activation and Synthesis
of a Tridecasaccharide Reminiscent of Mycobacterium Tuberculosis Cell
Wall Lipoarabinomannan. Angew. Chem., Int. Ed. 2016, 55, 7786−7791. (e)
Yu, B. Gold(I)-Catalyzed Glycosylation with Glycosyl O-Alkynylbenzoates
as Donors. Acc. Chem. Res. 2018, 51, 507−516. (f) Dong, X.; Chen, L.;
Zheng, Z.; Ma, X.; Luo, Z.; Zhang, L. Silver-Catalyzed Stereoselective For-
mation of Glycosides using Glycosyl Ynenoates as Donors. Chem. Commun.
2018, 54, 626−8629. (g) Lacey, K. D.; Quarels, R. D.; Du, S.; Fulton, A.;
Reid, N. J.; Firesheet, A.; Ragains, J. R. Acid-Catalyzed O-Glycosylation
with Stable Thioglycoside Donors. Org. Lett. 2018, 20, 5181−5185.
(17) Jacobsson, M.; Malmberg, J.; Ellervik, U. Aromatic O-glycosylation.
Carbohydr. Res. 2006, 341, 1266−1281.
(20) Hu, Y.; Yu, K.; Shi, L.-L.; Liu, L.; Sui, J.-J.; Liu, D.-Y.; Xiong, B.;
Sun, J.-S. o-(p-Methoxyphenylethynyl)phenyl Glycosides: Versatile New
Glycosylation Donors for the Highly Efficient Construction of Glycosidic
Linkages. J. Am. Chem. Soc. 2017, 139, 12736−12744.
(21) Hu, Z.; Tang, Y.; Yu, B. Glycosylation with 3,5-Dimethyl-4-(2′-
phenylethynylphenyl)phenyl(EPP) Glycosides via a Dearomative Activa-
tion Mechanism. J. Am. Chem. Soc. 2019, 141, 4806−4810.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(22) Further elongation of the glycan chain by activation of the SBn
group in a one-pot sequential glycosylation manner is possible. For details,
see the Supporting Information. For recent reviews and selected examples
on one-pot sequential glycosylation, see: (a) Kulkarni, S. S.; Wang, C.-C.;
Sabbavarapu, N. M.; Podilapu, A. R.; Liao, P.-H.; Hung, S.-C. “One-Pot”
Protection, Glycosylation, and Protection−Glycosylation Strategies of Car-
bohydrates. Chem. Rev. 2018, 118, 8025−8104. (b) Zhang, Z.; Ollmann, I.
R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H. Programmable One-
Pot Oligosaccharide Synthesis. J. Am. Chem. Soc. 1999, 121, 734−753. (c)
Huang, X.; Huang, L.; Wang, H.; Ye, X.-S. Iterative One-Pot Synthesis of
Oligosaccharides. Angew. Chem. Int. Ed. 2004, 43, 5221−5224. (d) Wu, Y.;
Xiong, D.-C.; Chen, S.-C.; Wang, Y.-S.; Ye, X.-S. Total Synthesis of Myco-
bacterial Arabinogalactan Containing 92 Monosaccharide Units. Nat. Com-
mun. 2017, 8, 14851. (e) Nokami, T.; Hayashi, R.; Saigusa, Y.; Shimizu, A.;
Liu, C.-Y.; Mong, K.-K. T.; Yoshida, J.-i., Automated Solution-Phase Syn-
thesis of Oligosaccharides via Iterative Electrochemical Assembly of Thio-
glycosides. Org. Lett. 2013, 15, 4520−4523. (f) Isoda, Y.; Sasaki, N.;
Kitamura, K.; Takahashi, S.; Manmode, S.; Takeda-Okuda, N.; Tamura, J.-
i.; Nokami, T.; Itoh, T. Total Synthesis of TMG-chitotriomycin Based on
an Automated Electrochemical Assembly of a Disaccharide Building Block.
Beilstein J. Org. Chem. 2017, 13, 919–924. (g) Zhang, Y.; Xiang, G.; He, S.;
Hu, Y.; Liu, Y.; Xu, L.; Xiao, G., Orthogonal One-Pot Synthesis of Oligo-
saccharides Based on Glycosyl ortho-Alkynylbenzoates. Org. Lett. 2019, 21,
2335−2339.
(23) For OPTB glycosides: (a) Shu, P.; Xiao, X.; Zhao, Y.; Xu, Y.; Yao,
W.; Tao, J.; Wang, H.; Yao, G.; Lu, Z.; Zeng, J.; Wan, Q. Interrupted
Pummerer Reaction in Latent-Active Glycosylation: Glycosyl Donors with
a Recyclable and Regenerative Leaving Group. Angew. Chem. Int. Ed. 2015,
54, 14432−14436. (b) Shu, P.; Yao, W.; Xiao, X.; Sun, J.; Zhao, X.; Zhao,
Y.; Xu, Y.; Tao, J.; Yao, G.; Zeng, J.; Wan, Q. Glycosylation via Remote Ac-
tivation of Anomeric Leaving Groups: Development of 2-(2-propylsulfi-
nyl)benzyl Glycosides as Novel Glycosyl Donors. Org. Chem. Front. 2016,
3, 177−183. (c) Meng, L.; Zeng, J.; Wan, Q. Interrupted Pummerer Reac-
tion in Latent-Active Glycosylation. Synlett 2018, 29, 148−156. (d) Chen,
W.; Zeng, J.; Wang, H.; Xiao, X.; Meng, L.; Wan, Q. Tracking the Leaving
Group in the Remote Activation of O-2-[(propan-2-yl)sulfinyl]benzyl
(OPSB) Glycoside. Carbohydr. Res. 2017, 452, 1−5. (e) Zhao, Y.; Zeng, J.;
Liu, Y.; Xiao, X.; Sun, G.; Sun, J.; Shu, P.; Fu, D.; Meng, L.; Wan, Q. Col-
lective Syntheses of Phenylethanoid Glycosides by Interrupted Pummerer
Reaction Mediated Glycosylations. J. Carbohydr. Chem. 2018, 37, 471−497.
(24) (a) Li, W.; Yu, B. Gold-Catalyzed Glycosylation in the Synthesis of
Complex Carbohydrate-Containing Natural Products. Chem. Soc. Rev. 2018,
47, 7954−7984. (b) Xiao, G.; Shao, X.; Zhu, D.; Yu, B. Chemical Synthesis
of Marine Saponins. Nat. Prod. Rep. 2019, 36, 769−787.
(18) (a) Mahling, J.-A.; Schmidt, R. R. Aryl C-Glycosides from O-Gly-
cosyl trichloroacetimidates and Phenol Derivatives with Trimethylsilyl Tri-
fluoromethanesulfonate (TMSOTf) as the Catalyst. Synthesis 1993,
325−328. (b) Mahling, J.-A.; Jung, K.-H.; Schmidt, R. R. Glycosyl Imidates,
69. Synthesis of Flavone C-Glycosides Vitexin, Isovitexin, and Isoembi-
genin. Liebigs Ann. 1995, 461−466.
(19) Selected examples: (a) Ye, H.; Xiao, C.; Zhou, Q.-Q.; Wang, P. G.;
Xiao, W.-J. Synthesis of Phenolic Glycosides: Glycosylation of Sugar Lac-
tols with Aryl Bromides via Dual Photoredox/Ni Catalysis. J. Org. Chem.
2018, 83, 13325−13334. (b) Lucchetti, N.; Gilmour, R. Reengineering
Chemical Glycosylation: Direct, Metal-Free Anomeric O-Arylation of Un-
activated Carbohydrates. Chem. Eur. J. 2018, 24, 16266−16270. (c) Tolnai,
(25) (a) Zhu, Y.; Yu, B. Highly Stereoselective -Mannopyranosylation
via the 1--Glycosyloxy-isochromenylium-4-gold(I) Intermediates. Chem.
Eur. J. 2015, 21, 8771−8780. (b) Zhu, Y.; Shen, Z.; Li, W.; Yu, B. Stereose-
lective Synthesis of β-rhamnopyranosides via Gold(I)-Catalyzed Glycosyl-
ation with 2-Alkynyl-4-Nitro-Benzoate Donors. Org. Biomol. Chem. 2016,
14, 1536−1539.
ACS Paragon Plus Environment