pubs.acs.org/joc
C-H bond using transition metal catalysis.1 Notable pro-
Copper(II)-Catalyzed Ortho-Acyloxylation of the
2-Arylpyridines sp2 C-H Bonds with Anhydrides,
Using O2 as Terminal Oxidant
gress has been made predominantly with Pd,2 Ru,3 and Rh4
catalysts which allow atom-economical transformations of
the C-H bonds into C-C and C-heteroatom bonds. Re-
cently, the development of regioselective C-O bond formation
via C-H cleavage has attracted much attention.5 We also
have developed an efficient rhodium-catalyzed o-benzoxyla-
tion of the sp2 C-H bond.6 However, most reports on such
transformations have been limited to acetoxylation,7 and
have used relatively expensive palladium or rhodium catalysts.
From the synthetic point of view, it is more cost-efficient to
replace the expensive transition metal catalyst with a cheaper
one. Employing copper as the catalyst, which is not com-
monly used in C-H functionalization reactions,8 is particu-
larly attractive due to its low cost and toxicity. In 2006, Yu
described an elegant example of Cu(OAc)2-catalyzed oxida-
tive acetoxylation of arene C-H bonds in HOAc/Ac2O using
oxygen as a clean oxidant at an elevated temperature
(Scheme 1, eq 1).9 In 2005, Yu also reported a Pd-catalyzed
Wenhui Wang,† Fang Luo,† Shouhui Zhang,† and
Jiang Cheng*,†,‡
†College of Chemistry & Materials Engineering,
Wenzhou University, Wenzhou 325027, People’s Republic of
China, and ‡State Key Laboratory of Coordination
Chemistry, Nanjing University, Nanjing 210093,
People’s Republic of China
Received January 16, 2010
(4) For selected recent reports on rhodium catalysis, see: (a) Zhao, X.;
Yu, Z. J. Am. Chem. Soc. 2008, 130, 8136. (b) Berman, A. M.; Lewis, J. C.;
Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 14926. (c) Lewis,
J. C.; Berman, A. M.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008,
130, 2493. (d) Li, L.; Brennessel, W. W.; Jones, W. D. J. Am. Chem. Soc. 2008,
130, 12414. (e) Lewis, J. C.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc.
2007, 129, 5332. (f) Proch, S.; Kempe, R. Angew. Chem., Int. Ed. 2007, 46,
3135.
(5) (a) Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004,
126, 2300. (b) Kalyani, D.; Sanford, M. S. Org. Lett. 2005, 7, 4149. (c) Fu, Y.;
Li, Z.; Liang, S.; Guo, Q.-X.; Liu, L. Organometallics 2008, 27, 3736.
(d) Yoneyama, T.; Crabtree, R. H. J. Mol. Catal. A: Chem. 1996, 108, 35.
(e) Dick, A. R.; Kampf, J. W.; Sanford, M. S. Organometallics 2005, 24, 482.
(f) Desai, L. V.; Malik, H. A.; Sanford, M. S. Org. Lett. 2006, 8, 1141.
(g) Reddy, B. V. S.; Reddy, L. R.; Corey, E. J. Org. Lett. 2006, 8, 3391. (h) Hull,
K. L.; Lanni, E. L.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 14047.
(i) Wang, G.-W.; Yuan, T.-T.; Wu, X.-L. J. Org. Chem. 2008, 73, 4717. (j) Desai,
L. V.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 9542.
(k) Wang, D.-H.; Hao, X.-S.; Wu, D.-F.; Yu, J.-Q. Org. Lett. 2006, 8, 3387.
(6) Ye, Z.; Wang, W.; Luo, F.; Zhang, S.; Cheng, J. Org. Lett. 2009, 11,
3974.
A chelation-assisted copper(II)-catalyzed ortho-acyloxy-
lation of the 2-arylpyridine sp2 C-H bond with anhy-
dride is described. The procedure tolerates various
functional groups, such as carbomethoxyl, methoxyl,
fluoro, bromo, chloro, and cyano groups, affording the
mono- or diacyloxylated products in moderate to good
yields. Importantly, this procedure uses O2 as a clean
terminal oxidant.
(7) For transition metal-catalyzed acyloxylation of C-H bonds other
than acetoxylation, see ref 6 and: (a) Dick, A. R.; Kampf, J. W.; Sanford,
M. S. J. Am. Chem. Soc. 2005, 127, 12790. (b) Racowski, J. M.; Dick, A. R.;
Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 10974.
Immense effort has been directed toward the development
of efficient strategies for the direct functionalization of the
(8) (a) Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 12404. (b) Li,
Z.; Bohle, D. S.; Li, C.-J. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 8928.
(c) Uemura, T.; Imoto, S.; Chatani, N. Chem. Lett. 2006, 35, 842. (d) Li, Z.;
Li, C.-J. J. Am. Chem. Soc. 2005, 127, 6968. (e) Do, H.-Q.; Daugulis, O.
J. Am. Chem. Soc. 2008, 130, 1128. (f) Basle, O.; Li, C.-J. Org. Lett. 2008, 10,
3661. (g) Ban, I.; Sudo, T.; Taniguchi, T.; Itami, K. Org. Lett. 2008, 10, 3607.
(h) Lee, J. M.; Park, E. J.; Cho, S. H.; Chang, S. J. Am. Chem. Soc. 2008, 130,
7824. (i) Chen, X.; Dobereiner, G.; Hao, X.-S.; Giri, R.; Maugel, N.; Yu,
J.-Q. Tetrahedron 2009, 65, 3085. (j) Do, H.-Q.; Khan, R. M. K.; Daugulis,
O. J. Am. Chem. Soc. 2008, 130, 15185. (k) Li, Z.; Li, C.-J. J. Am. Chem. Soc.
2006, 128, 56. (l) Brasche, G.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008,
(1) For selected reviews on C-H functionalization, see: (a) Daugulis, O.;
Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074. (b) Colby, D. A.;
Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624. (c) Beccalli, E. M.;
Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318.
ꢀ
(d) Dıaz-Requejo, M. M.; Perez, P. J. Chem. Rev. 2008, 108, 3379. (e) Jia, C.;
´
Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633. (f) Kakiuchi, F.;
Murai, S. Acc. Chem. Res. 2002, 35, 826. (g) Chatani, N. Directed Metallation;
Springer: Berlin, Germany, 2008; Vol. 24.
(2) For selected recent reports on palladium catalysis, see: (a) Yu, W.-Y.;
Sit, W. N.; Lai, K.-M.; Zhou, Z.; Chan, A. S. C. J. Am. Chem. Soc. 2008, 130,
3304. (b) Zhang, Y.; Feng, J.; Li, C.-J. J. Am. Chem. Soc. 2008, 130, 2900. (c) Hull,
K. L.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 11904. (d) Zhao, X.;
Dimitrijevic, E.; Dong, V. M. J. Am. Chem. Soc. 2009, 131, 3466. (e) Thu, H.-Y.;
Yu, W.-Y.; Che, C. J. Am. Chem. Soc. 2006, 128, 9048. (f) Ackermann, L.;
Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed. 2009, 48, 9792. (g) Chen, X.;
Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
(3) For selected recent reports on ruthenium catalysis, see: (a) Ozdemir,
I.; Demir, S.; Cetinkaya, B.; Gourlaouen, C.; Maseras, F.; Bruneau, C.;
Dixneuf, P. H. J. Am. Chem. Soc. 2008, 130, 1156. (b) Ackermann, L.; Born,
R.; Alvarez-Bercedo, P. Angew. Chem., Int. Ed. 2007, 46, 6364. (c) Ackermann,
L.; Althammer, A.; Born, R. Angew. Chem., Int. Ed. 2006, 45, 2619.
(d) Murahashi, S.-I.; Nakae, T.; Terai, H.; Komiya, N. J. Am. Chem. Soc.
2008, 130, 11005. (e) Inoue, S.; Shiota, H.; Fukumoto, Y.; Chatani, N. J. Am.
Chem. Soc. 2009, 131, 6898.
ꢀ
47, 1932. (m) Basle, O.; Li, C.-J. Green Chem. 2007, 9, 1047. (n) Li, C.-J.; Li,
Z. Pure Appl. Chem. 2006, 78, 935. (o) Usui, S.; Hashimoto, Y.; Morey, J. V.;
Wheatley, A. E. H.; Uchiyama, M. J. Am. Chem. Soc. 2007, 129, 15102.
(p) Hamada, T.; Ye, X.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 833.
(q) Richter, J. M.; Whitefield, B. W.; Maimone, T. J.; Lin, D. W.; Castroviejo,
M. P.; Baran, P. S. J. Am. Chem. Soc. 2007, 129, 12857. (r) Xifra, R.; Ribas,
ꢁ
X.; Llobet, A.; Poater, A.; Duran, M.; Sola, M.; Stack, T. D. P.; Benet-
Buchholz, J.; Donnadieu, B.; Mahıa, J.; Parella, T. Chem.;Eur. J. 2005, 11,
´
5146. (s) Bernini, R.; Fabrizi, G.; Sferrazza, A.; Cacchi, S. Angew. Chem., Int.
Ed. 2009, 48, 8078. (t) Ueda, S.; Nagasawa, H. Angew. Chem., Int. Ed. 2009,
47, 6411. (u) Phipps, R. J.; Gaunt, M. J. Science 2009, 323, 1593. (v) Wang,
Q.; Schreiber, S. L. Org. Lett. 2009, 11, 5178. (w) Yotphan, S.; Bergman,
R. G.; Ellman, J. A. Org. Lett. 2009, 11, 1511.
(9) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc.
2006, 128, 6790.
DOI: 10.1021/jo1000719
r
Published on Web 03/10/2010
J. Org. Chem. 2010, 75, 2415–2418 2415
2010 American Chemical Society