K. Mikami et al. / Tetrahedron Letters 51 (2010) 1371–1373
1373
Mandal, M.; Olah, G. A. Angew. Chem., Int. Ed. 2001, 40, 589–590; (d)
Blazejewski, J.-C.; Anselmi, E.; Wilmshurst, M. P. Tetrahedron Lett. 1999, 40,
5475–5478; (e) Ishii, A.; Higashiyama, K.; Mikami, K. Tetrahedron Lett. 1998, 39,
1199–1202; (f) Bravo, P.; Guidetti, M.; Viani, F.; Zanda, M.; Markovsky, A. L.;
Sorochinsky, A. E.; Soloshonok, I. V.; Soloshonok, V. A. Tetrahedron 1998, 54,
12789–12806; (g) Ishii, A.; Higashiyama, K.; Mikami, K. Chem. Lett. 1998, 32,
119–120; (h) Soloshonok, V. A.; Ono, T. J. Org. Chem. 1997, 62, 3030–3031; (i)
Ishii, A.; Higashiyama, K.; Mikami, K. Synlett 1997, 1381–1382; (j) Ono, T.;
Kukhar, V. P.; Soloshonok, V. A. J. Org. Chem. 1996, 61, 6563–6569; (k) Wang, Y.;
Mosher, H. S. Tetrahedron Lett. 1991, 32, 987–990; (l) Pirkle, W. H.; Hauske, J. R.
J. Org. Chem. 1977, 42, 2436–2439.
O
H
CH3
H
O
N
F
F
H
F
H3C
F
F
F
F
F
5. Reviews: Blasera, H.-U.; Spindler, F.. In Comprehensive Asymmetric Catalysis;
Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999; Vol. 1,.
Chapter 6.2 Ohkuma, T.; Kitamura, M.; Noyori, R.. In Catalytic Asymmetric
Synthesis; Ojima, I., Ed.; Wiley-VCH: New York, 2000; Vol. 2,. Chapter 1 Tang,
W.; Zhang, X. Chem. Rev. 2003, 103, 3029–3069; Spindler, F.; Blaser, H.-U.. In
The Handbook of Homogeneous Hydrogenation; de Vries, J. G., Ed.; Wiley-VCH:
Weinheim, 2007; Vol. 3,. Chapter 34 Ohkuma, T.; Kitamura, M.; Noyori, R. In
New Frontiers in Asymmetric Catalysis; Mikami, K., Lautens, M., Eds.; Wiley: New
York, 2007. Chapter 1; Leading references (a) Moessner, C.; Bolm, C. Angew.
Chem., Int. Ed 2005, 44, 7564–7567; (b) Zhu, S.-F.; Xie, J.-B.; Zhang, Y.-Z.; Li, S.;
Zhou, Q.-L. J. Am. Chem. Soc 2006, 128, 12886–12891; (c) Yang, Q.; Shang, G.;
Gao, W.; Deng, J.; Zhang, X. Angew. Chem., Int. Ed 2006, 45, 3832–3835; (d) Wu,
J.; Wang, F.; Ma, Y.; Cui, X.; Cun, L.; Zhu, J.; Deng, J.; Yu, B. Chem. Commun. 2006,
1766–1768; (e) Wang, Y.-Q.; Lu, S.-M.; Zhou, Y.-G. J. Org. Chem. 2007, 72, 3729–
3734; (f) Shang, G.; Yang, Q.; Zhang, X. Angew. Chem., Int. Ed. 2006, 45, 6360–
6362; (g) Reetz, M. T.; Bondarev, O. Angew. Chem., Int. Ed 2007, 46, 4523–4526;
(h) Cheemala, M. N.; Knochel, P. Org. Lett. 2007, 9, 3089–3092; (i) Mrsic, N.;
Minnaard, A. J.; Feringa, B. L.; de Vries, J. G. J. Am. Chem. Soc. 2009, 131, 8358–
8359; (j) Hou, G.; Gosselin, F.; Li, W.; McWilliams, J. C.; Sun, Y.; Weisel, M.;
O’Shea, P. D.; Chen, C.-y.; Davies, I. W.; Zhang, X. J. Am. Chem. Soc. 2009, 131,
9882–9883.
(A’)
Figure 1. MP2/6-311+G(d,p) optimized geometry: F (blue), H (white), C (gray), N
(purple), and O (red), respectively.
solvent5 led to the significant increase in enantioselectivity (up to
90% ee) (entry 7). Hydrogen bonding of the carbonyl protection and
perfluoroalkyl groups of the ketimines with acidic trifluoroethanol
may additionally exert to fix the (Z)-imine geometry (vide infra),14
leading to the increase in enantioselectivity. Otherwise, only low
enantioselectivity (15% ee) was obtained (entry 6). The benzoni-
trile-derived imine C4F9(Ph)C@NBoc might be geometrically iso-
metrized in the absence of the acidic alcohol.
The complex between the (Z)-isomer of C2F5(CH3)C@NAc and
trifluoroethanol was thus calculated by ab initio MP2/6-
311+G(d,p) (Fig. 1). The optimized structure (A0) shows multi-
hydrogen bonding sites in the complex. The primary interaction
is of the alcohol with the acyl-protecting group (1.856 Å). The sec-
ondary interactions are of trifluoroethanol methylene hydrogen
with the perfluoroalkyl fluorine atoms (2.879 Å and 2.926 Å,
respectively). Although these non-bonding distances are longer
than the sum of the van der Waals radii of 2.67 Å (H; 1.2 Å; F:
1.47 Å),1a the ‘hydrogen bonding’ network14 including the weak
electrostatic attraction1a of CH/FC type15 stabilizes the (Z)-geome-
try of C2F5(CH3)C@NAc to prevent interconversion of (Z/E)-isomers,
leading to the significant increase of enantioselectivity in acidic
trifluoroethanol.7,16,17
6. Excellent reviews: Burton, D. J.; Yang, Z. Y. Tetrahedron 1992, 48, 189–275;
Burton, D. J.; Lu, L.. In Topics in Current Chemistry; Chambers, R. D., Ed.; Springer:
Berlin, 1997; Vol. 193, pp 45–90.
7. An exception to give up to 91% ee in perfluoroalkanols including
trifluoroethanol: (a) Abe, H.; Amii, H.; Uneyama, K. Org. Lett. 2001, 3, 313–
316; Also see: (b) Wang, Y.-Q.; Lu, S.-M.; Zhou, Y.-G. Org. Lett. 2005, 7, 3235–
3238; (c) Wang, Y.-Q.; Lu, S.-M.; Zhou, Y.-G. J. Org. Chem. 2007, 72, 3729–3735.
8. Reviews on tandem (domino) reactions: Ziegler, F. E.. In Comprehensive Organic
Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: NewYork, 1991; Vol. 6, p
875; Tietze, L. F. Chem. Rev. (Thematic issue), Wender, P. A. (Ed.), 1996, 96, 115.;
Nakai, T.; Mikami, K. Kagaku no Ryoiki 1982, 36, 661 [Chem. Abstr. 1982, 96,
16001].
9. Tandem reductive amination was recently reported Storer, R. I.; Carrera, D. E.;
Ni, Y.; MacMillan, D. W. C. J. Am. Chem. Soc. 2006, 128, 84–86.
10. Mikami, K.; Murase, T.; Itoh, Y. J. Am. Chem. Soc 2007, 129, 11686–11687.
11. The double alkylation even with sterically demanding benzonitrile and
phenylacetonitrile can be promoted by
Ciganek, E. J. Org. Chem. 1992, 57, 4521–4527.
12. Hyperconjugation of the lone electron pair of carbonyl oxygen into the
a Lewis acidic cerium reagent:
In conclusion, we have developed the perfluoroalkylation and
catalytic asymmetric hydrogenation of nitriles to give enantio-en-
riched acyclic perfluoroalkyl sec-amines. To our knowledge,5 this is
the first successful catalytic asymmetric hydrogenation of acyclic
simple perfluoroalkyl ketimines even with the generally employ-
able Boc protecting group.
r
*
orbital of the C–C bond of perfluoroalkyl group has been proposed: Corey, E. J.;
Link, J. O.; Sarsha, S.; Shao, Y. Tetrahedron Lett. 1992, 33, 7103–7106.
13. Imamoto, T.; Iwadate, N.; Yoshida, K. Org. Lett. 2006, 8, 2289–2292; Also see a
neutral tolBINAP-Ir complex: Tani, K.; Onouchi, J.; Yamagata, T.; Kataoka, Y.
Chem. Lett. 1995, 955–958.
14. Reviews: Desiraju, G. R. Acc. Chem. Res. 1996, 29, 441–449; Geffrey, G. A.;
Saenger, W. Hydrogen Bonding in Biological Structures; Springer: Berlin, 1991;
Jodry, J. J.; Mikami, K. Tetrahedron Lett. 2007, 129, 11686–11687. and references
cited therein.
References and notes
15. Hartmann, M.; Wetmore, S. D.; Random, L. J. Phys. Chem. A 2001, 105, 4470–
4479; Steiner, T. Acta Crystallogr., Sect. B 1998, B54, 456–470; Thalladi, V.;
Weiss, H.-C.; Blaser, D.; Boese, R.; Nangia, A.; Desiraju, G. R. J. Am. Chem. Soc.
1998, 120, 8702–8710; Ogura, K.; Ooshima, K.; Akazome, M.; Matsumoto, S.
Tetrahedron 2006, 62, 2484–2491.
16. An organometallic intermediate is reported to be stabilized in trifluoroethanol
as compared to methanol: Milani, B.; Corso, G.; Mestroni, G. Organometallics
2000, 19, 3435–3441. and references cited therein.
17. The reaction in the polar protic trifluoroethanol is reported to favor formation
of a charged intermediate: Whitfield, H. J.; Griffin, R. J.; Hardcastle, I. R.;
Henderson, A.; Meneyrol, J.; Mesguische, V.; Sayle, K. L.; Golding, B. T. Chem.
Commun. 2003, 2802–2803. and references cited therein.
1. (a) Soloshonok, V. A.; Mikami, K.; Yamazaki, T.; Welch, J. T.; Honek, J. F. Curr.
Fluoroorganic Chem., ACS Symp. 2006, 949; (b) Uneyama, K. Organofluorine
Chemistry; Blackwell: Oxford, 2006; (c) Shimizu, T.; Hiyama, M. Angew. Chem.,
Int. Ed. 2005, 44, 214–231; (d) Kirsch, P. Modern Fluoroorganic Chemistry; Wiley-
VCH: Weinheim, 2004; (e) Ma, J.-A.; Cahard, D. Chem. Rev. 2004, 104, 6119–
6146; (f) Mikami, K.; Itoh, Y.; Yamanaka, M. Chem. Rev. 2004, 104, 1–16;
(g)Organofluorines; Neilson, A. H., Ed.; Springer: Berlin, 2002; (h) Hiyama, T.
Organofluorine Compounds; Springer: Berlin, 2000.
2. Muller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881–1886. and references
cited therein.
3. Fluorine in Medicinal Chemistry and Chemical Biology; Ojima, I., Ed.; Blackwell:
Oxford, 2009. and references cited therein.
4. (a) Soloshonok, V. A.; Berbasov, D. O. J. Fluor. Chem. 2006, 127, 597–603; (b)
Soloshonok, V. A. Angew. Chem., Int. Ed 2006, 45, 766–769; (c) Prakash, G. K. S.;