C O M M U N I C A T I O N S
(Figured S4 and S5, SI). Standard N2 sorption measurements
revealed that no appreciable pore could be detected for 1-3 as
expected from the single X-ray diffraction analysis. The low
hydrogen adsorption isotherm of 4 shows a reversible hydrogen
sorption, and the adsorbed amount of hydrogen corresponds to ∼1.0
wt % at 1 bar and 77 K (Figure S6, SI), suggesting a favorable
interaction of H2 with the host framework.6a
Although the occluded DMF molecules could be exchanged by a
small molecule, e.g. ethanol, or removed by evacuation processes (see
SI and Figure 2), they could not be exchanged by big molecules such
as benzene or toluene directly. Therefore 4vac was chosen for studying
its adsorption and separation of C6-C8 aromatics. Upon immersing
of 4vac is likely to be the packing efficiency. Increasing the number of
electron-donating substituent groups also leads to an increase of
intermolecular repulsions of their dimers that might make the
dimensional sizes of these dimers too large to be accommodated by
the 1D channels in 4vac
.
In summary, we succeeded in preparing MIL-53(MnII) single
crystals using PNOs as µ2-ligands. A porous crystal 4 could be
formed using BPNO as a bi-µ2-ligand. Its evacuated form 4vac
showed selective adsorptions toward C6-C8 aromatics due to the
different degrees of guest-linker interactions.
Acknowledgment. This work is supported by the National Basic
Research Program of China (2007CB925101), NSFC (20671087),
and the NSFC Fund for Creative Research Groups (20921002). We
thank Prof. Zhijian Wu and Ms. Lin Cheng for helpful discussions.
4vac into liquids including benzene, toluene, xylenes, ethylbenzene, and
chlorobenzene, only C6-C7 molecules could be intercalated, and
crystals of 4ben, 4tol, and 4chl were obtained (Table S1, SI). Single-
crystal structural analysis shows that the intercalated molecules have
definite positions in the channels and fill the channels pairwise. Along
each channel, there are two symmetrically equivalent positions
available for the pairs. Furthermore, when 4vac was immersed into a
mixture of benzene and toluene with 1:1 volume ratio, only benzene
could be selectively adsorbed. These results clearly demonstrate that
Supporting Information Available: Experimental details and data,
CIF files, thermal ellipsoid of crystal structures of 1-4, TGA and
powder X-ray diffractions for 1-4, X-ray thermodiffractogram and the
H2 sorption isotherms for 4, and the views of the noncovalent
interactions. This material is available free of charge via the Internet
4
vac could be a potential absorbent for the separation of C6, C7, and
References
C8 aromatics in liquid phase.3b,13 A higher chlorobenzene selectivity
of 4vac over benzene (Figure 2) was also observed in a process similar
to that using benzene and toluene.
(1) (a) Wang, Z. D.; Fingas, M.; Landriault, M.; Sigouin, L.; Xu, N. N. Anal.
Chem. 1995, 67, 3491–3500. (b) Arce, A.; Earle, M. J.; Rodriguez, H.;
Seddon, K. R.; Soto, A. Green Chem. 2008, 10, 1294–1300.
(2) (a) Huttenloch, P.; Roehl, K. E.; Czurda, K. EnViron. Sci. Technol. 2001,
35, 4260–4264. (b) Sarafraz-Yazdi, A.; Amiri, A. H.; Es’haghi, Z. Talanta
2009, 78, 936–941.
(3) (a) Ranck, J. M.; Bowman, R. S.; Weeber, J. L.; Katz, L. E.; Sullivan,
E. J. J. EnViron. Eng. ASCE 2005, 131, 434–442. (b) Wang, X. Q.; Liu,
L. M.; Jacobson, A. J. Angew. Chem., Int. Ed. 2006, 45, 6499–6503.
(4) (a) Fe´rey, G.; Serre, C. Chem. Soc. ReV. 2009, 38, 1380–1399. (b) Barthelet,
K.; Marrot, J.; Riou, D.; Fe´rey, G. Angew. Chem., Int. Ed. 2002, 41, 281–
284. (c) Serre, C.; Millange, F.; Thouvenot, C.; Nogues, M.; Marsolier,
G.; Louer, D.; Fe´rey, G. J. Am. Chem. Soc. 2002, 124, 13519–13526. (d)
Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.;
Bataille, T.; Fe´rey, G. Chem.sEur. J. 2004, 10, 1373–1382.
(5) (a) Millange, F.; Guillou, N.; Walton, R. I.; Greneche, J. M.; Margiolaki,
I.; Fe´rey, G. Chem. Commun. 2008, 4732–4734. (b) Coudert, F. X.; Mellot-
Draznieks, C.; Fuchs, A. H.; Boutin, A. J. Am. Chem. Soc. 2009, 131,
11329–11331. (c) Meilikhov, M.; Yusenko, K.; Fischer, R. A. Dalton Trans.
2009, 600–602. (d) Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N. A.;
Balas, F.; Vallet-Regi, M.; Sebban, M.; Taulelle, F.; Fe´rey, G. J. Am. Chem.
Soc. 2008, 130, 6774–6780.
(6) (a) Fe´rey, G.; Millange, F.; Morcrette, M.; Serre, C.; Doublet, M. L.;
Greneche, J. M.; Tarascon, J. M. Angew. Chem., Int. Ed. 2007, 46, 3259–
3263. (b) Couck, S.; Denayer, J. F. M.; Baron, G. V.; Remy, T.; Gascon,
J.; Kapteijn, F. J. Am. Chem. Soc. 2009, 131, 6326–6327. (c) Ahnfeldt, T.;
Gunzelmann, D.; Loiseau, T.; Hirsemann, D.; Senker, J.; Fe´rey, G.; Stock,
N. Inorg. Chem. 2009, 48, 3057–3064. (d) Himsl, D.; Wallacher, D.;
Hartmann, M. Angew. Chem., Int. Ed. 2009, 48, 4639–4642.
(7) Meilikhov, M.; Yusenko, K.; Fischer, R. A. J. Am. Chem. Soc. 2009, 131,
9644–9645.
Figure 2. Guest exchange of 4 with EtOH and selective absorptions of
C6-C8 aromatics by single crystals of 4vac
.
For selective adsorption and separation of C6-C8 aromatic using
4vac as absorbents, the π-π interactions including the guest-guest
and guest-linker interactions are considered to play key roles for the
(8) Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B. L.; O’Keeffe, M.; Yaghi,
O. M. J. Am. Chem. Soc. 2005, 127, 1504–1518.
crystal to crystal transformations. The three occluded aromatics in 4ben
,
(9) Whitfield, T. R.; Wang, X. Q.; Liu, L. M.; Jacobson, A. J. Solid State Sci.
2005, 7, 1096–1103.
4tol, and 4chl tend to form antiparallel dimers to facilitate the
dipole-dipole interactions.14 Besides intermolecular parallel displaced
(PD) π-π interactions, they can also interact with BDC rings with
nearly isoenergetic T-shaped configurations.14,15 There is only one
T-shaped π-π interaction between each toluene molecule and the
phenyl ring of BDC linker, while there are two T-shaped π-π
interactions for benzene and chlorobenzene (Figure S7). In addition,
one C-H· · ·Cl hydrogen bonding between each chlorobenzene and
the BPNO can be formed (Figure S7, SI). These two interactions might
be responsible for the selectivity trend (chlorobenzene > benzene >
toluene) of 4vac. As we already noticed, all three aromatics present as
dimers in order to have high packing densities within the 1D
channels.3b The dimeric C8 aromatics are unlikely favored within the
channels as the number of guest-host T-shaped π-π interactions
might be reduced when more electron-donating substituent groups were
attached to the benzene rings, a case having already occurred in 4tol.
Another dominant factor for filling guest molecules in the 1D channel
(10) Janiak, C. Dalton Trans. 2000, 3885–3896.
(11) Cozzi, F.; Cinquini, M.; Annunziata, R.; Dwyer, T.; Siegel, J. S. J. Am.
Chem. Soc. 1992, 114, 5729–5733.
(12) (a) Hill, R. J.; Long, D. L.; Champness, N. R.; Hubberstey, P.; Schroder,
M. Acc. Chem. Res. 2005, 38, 335–348. (b) Ma, S. L.; Qi, C. M.; Guo,
Q. L.; Zhao, M. X. J. Mol. Struct. 2005, 738, 99–104.
(13) (a) Alaerts, L.; Kirschhock, C. E. A.; Maes, M.; van der Veen, M. A.;
Finsy, V.; Depla, A.; Martens, J. A.; Baron, G. V.; Jacobs, P. A.; Denayer,
J. E. M.; De Vos, D. E. Angew. Chem., Int. Ed. 2007, 46, 4293–4297. (b)
Finsy, V.; Verelst, H.; Alaerts, L.; De Vos, D.; Jacobs, P. A.; Baron, G. V.;
Denayer, J. F. M. J. Am. Chem. Soc. 2008, 130, 7110–7118. (c) Alaerts,
L.; Maes, M.; Giebeler, L.; Jacobs, P. A.; Martens, J. A.; Denayer, J. F. M.;
Kirschhock, C. E. A.; De Vos, D. E. J. Am. Chem. Soc. 2008, 130, 14170–
14178. (d) Liu, Q. K.; Ma, J. P.; Dong, Y. B. Chem.sEur. J. 2009, 15,
10364–10368.
(14) Tsuzuki, S.; Honda, K.; Uchimaru, T.; Mikami, M.; Tanabe, K. J. Am.
Chem. Soc. 2002, 124, 104–112.
(15) (a) Wheeler, S. E.; Houk, K. N. J. Am. Chem. Soc. 2008, 130, 10854–
10855. (b) Sherrill, C. D.; Takatani, T.; Hohenstein, E. G. J. Phys. Chem.
A 2009, 113, 10146–10159. (c) Park, Y. C.; Lee, J. S. J. Phys. Chem. A
2006, 110, 5091–5095.
JA910818A
9
J. AM. CHEM. SOC. VOL. 132, NO. 11, 2010 3657