Morphology-Tailored Synthesis of PbSe Nanocrystals and Thin Films
[17] K. S. Leschkies, T. J. Beatty, M. S. Kang, D. J. Norris, E. S. Ay-
dil, ACS Nano 2009, 3, 3638.
[18] M. W. Luther, J. M. Zheng, H. Wu, A. P. Alivistos, Nano Lett.
2009, 9, 1699.
[19] G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds,
A. G. Pattantyus-Abraham, E. H. Sargent, ACS Nano 2008, 2,
833.
in a Carbolite furnace. The precursor solution in a round-bottomed
flask was kept in a water bath above the piezoelectric modulator
of a PIFCO ultrasonic humidifier (Model No. 1077). The aerosol
droplets of the precursor thus generated were transferred into the
hot-wall zone of the reactor by carrier gas, where the precursor
decomposes to deposit a thin film of the required material.
[20] W. Ma, J. M. Luther, H. Zheng, Y. Wu, A. P. Alivisatos, Nano
Lett. 2009, 9, 1699.
[21] M. Law, M. C. Beard, S. Choi, J. M. Luther, M. C. Hanna,
A. J. Nozik, Nano Lett. 2008, 8, 3904.
PbSe Nanoparticles by the Colloidal Method: TOP (12.7 g) and
oleic acid (1 mL) along with octadecene (4 mL) were placed in
three-neck flask and heated to 100 °C under vacuum for 30 min.
The flask was then flushed with nitrogen and again exposed to a
vacuum for 5 min. This procedure was repeated three times and
heating was continued until 200 °C, after which the temperature
was maintained. Bis[N,N-diisobutyl-NЈ-(4-nitrobenzoylselenoure-
ato)lead(II)] (0.70 g) was then dissolved in TOP (3 mL), and octa-
decene (1 mL) was rapidly injected. The colour of the mixture
changed instantaneously from yellow to black–brown. The hot re-
action flask was removed from the heating mantle within 60 s and
was allowed to cool at room temperature. The addition of acetone
(20 mL) into the flask gave a blackish precipitate, which was sepa-
rated by centrifugation. The obtained material appeared as brown
jelly and was suspended in toluene (5 mL) and re-precipitated by
adding an excess of acetone to wash away any impurities and excess
coating. The purified nanoparticles stayed suspended in toluene
without any coagulation for several weeks. The same reaction was
repeated at higher temperature of 250 °C.
[22] C. Y. Liu, Z. C. Holman, U. R. Kortshagen, Nano Lett. 2009,
9,449.
[23] R. D. Schaller, M. A. Petruska, V. I. Klimov, J. Phys. Chem. B
2003, 107, 13765.
[24] C. M. Evans, L. Guo, J. J. Peterson, S. M. Zacher, T. D. Krauss,
Nano Lett. 2008, 8,2896.
[25] B. R. Hyun, H. Chen, D. A. Rey, F. W. Wise, C. A. Batt, J.
Phys. Chem. B 2007, 111, 5726.
[26] G. Yao, L. H. V. Wang, Phys. Med. Biol. 1999, 44, 2307.
[27] R. K. K. Wang, Phys. Med. Biol. 2002, 47, 2281.
[28] Y. T. Lim, S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi,
J. V. Frangioni, Mol. Imaging 2003, 2, 50.
[29] K. Kellermann, D. Zimin, K. Alchalabi, P. Gasser, H. Zogg,
Physica E 2004, 20, 536.
[30] A. Munoz, J. Melendez, M. C. Torquemada, M. T. Rodrigo,
Thin Solid Films 1998, 317, 425.
[31] V. V. Tetyorkin, A. Y. Sipatov, F. F. Sizov, A. I. Fedorenko,
A. A. Fedorov, Infrared Phys. Technol. 1996, 37, 379.
[32] T. Beyer, M. Tacke, Appl. Phys. Lett. 1998, 73, 1191.
[33] J. M. Martin, J. L. Hernández, L. Adell, A. Rodriguez, F.
López, Semicond. Sci. Technol. 1996, 11, 1740.
[34] E. H. Sargent, Adv. Mater. 2005, 17, 515.
[35] J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoogland,
L. Levina, E. H. Sargent, Nat. Nanotechnol. 2009, 4, 40.
[36] G. Konstantatos, J. Clifford, L. Levina, E. H. Sargent, Nature
Photon. 2007, 1,531.
Acknowledgments
Javeed Akhtar thanks the Higher Education Commission (HEC)
of Pakistan for financial assistance, and we all thank the EPSRC
for funding. P. O. B. wrote this manuscript while a visiting fellow
at the IAS University of Durham. He would like to thank the Uni-
versity for the Fellowship and Collingwood College and its fellows
for being gracious hosts.
[37] C. B. Murray, S. W. Shouheng, D. H. Gaschler, T. A. Betley,
C. R. Kagan, IBM J. Res. Dev. 2001, 45, 47.
[38] M. Brumer, A. Kigel, L. Amirav, A. Sashchiuk, O. Solomesch,
N. Tessler, E. Lifshitz, Adv. Funct. Mater. 2005, 15, 1111.
[39] H. Tong, L. X. Yang, L. Li, L. Zhang, J. Y. Zhu, Angew. Chem.
2006, 118, 7903; Angew. Chem. Int. Ed. 2006, 45, 7739.
[40] K. L. Hull, J. W. Grebinski, T. H. Kosel, M. Kuno, Chem. Ma-
ter. 2005, 17, 4416.
[1] B. R. Hyun, H. Chen, D. A. Rey, F. W. Wise, C. A. Batt, J.
Phys. Chem. B 2007, 111, 5726.
[2] F. W. Wise, Acc. Chem. Res. 2000, 33, 773.
[3] R. P. Watekar, A. Lin, S. Ju, W. T. Han, Opt. Fiber Commun.
Conf. (OFC), 2008, 1.
[4] M. Brumer, M. Sirota, A. Kigel, A. Sashchiuk, E. Galun, Z.
Burshtein, E. Lifshitz, Appl. Opt. 2006, 45, 7488.
[5] P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour,
N. Peyghambarian, Appl. Phys. Lett. 1997.71, 1595.
[6] J. Ethan, D. Klem, L. Levina, E. H. Sargent, Appl. Phys. Lett.
2005, 87, 053101.
[7] J. S. Steckel, S. Coe-Sullivan, V. Bulovic, M. G. Bawendi, Adv.
Mater. 2003, 15, 1862.
[8] C. E. Finlayson, A. Amezcua, P. J. A. Sazio, P. S. Walker, J.
Mod. Opt. 2005, 52, 955.
[9] D. V. Talapin, C. B. Murray, Science 2005, 310, 86.
[10] J. M. Luther, M. Law, Q. Song, C. L. Perkins, M. C. Beard,
A. J. Nozik, ACS Nano 2008, 2, 271.
[11] J. P. Clifford, K. W. Johnston, L. Levina, E. H. Sargent, Appl.
Phys. Lett. 2007, 91, 2531171.
[12] V. Sholin, A. J. Breeze, I. E. Anderson, Y. Sahoo, D. Reddy,
S. A. Carter, Sol. Energy Mater. Sol. Cells 2008, 92, 1706.
[13] A. Bhardwaj, V. R. Balakrishnan, P. Srivastava1, H. K.
Sehgal1, Semicond. Sci. Technol. 2008, 23, 095020.
[14] S. J. Kim, W. J. Kim, Y. Sahoo, A. N. Cartwright, P. N. Prasad,
Appl. Phys. Lett. 2008, 92, 031107.
[15] D. Yun, W. Feng, H. Wu, K. Yoshino, Sol. Energy Mater. Sol.
Cells 2009, 93, 1208.
[16] B. Vercelli, G. Zotti, A. Berlin and M. Natali Chem. Mater.
2010, ASAP Article, DOI: 10.1021/cm903824e.
[41] M. J. Bierman, Y. K. Albert Lau, S. Jin, Nano Lett. 2007, 7,
2907.
[42] T. Ji, W. B. Jian, J. Fang, J. Am. Chem. Soc. 2003, 125, 8448.
[43] L. Carbone, S. Kudera, C. Giannini, G. Ciccarella, R. Cingol-
ani, P. D. Cozzoli, L. Manna, J. Mater. Chem. 2006, 16, 3952.
[44] A. J. Houtepen, R. Koole, D. Vanmaekelbergh, J. Meeldijk,
S. G. Hickey, J. Am. Chem. Soc. 2006, 128, 6792.
[45] W. Lu, P. Gao, W. B. Jian, Z. L. Wang, J. Fang, J. Am. Chem.
Soc. 2004, 126, 14816.
[46] S. Kudera, L. Carbone, M. F. Casula, R. Cingolani, A. Falqui,
E. Snoeck, W. J. Parak, L. Manna, Nano Lett. 2005, 5, 445.
[47] W. Wang, Y. Geng, Y. Qian, M. Ji, X. Liu, Adv. Mater. 1998,
10, 1479.
[48] W. W. Yu, J. C. Falkner, B. S. Shih, V. L. Colvin, Chem. Mater.
2004, 16, 3318.
[49] W. Lu, Y. Ding, Z. L. Wang, J. Fang, J. Phys. Chem. B 2005,
109, 19219.
[50]
E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti,
M. Sirota, E. Galun, Z. Burshtein, A. Q. Le Quang, I. Ledoux-
Rak, J. Zyss, J. Phys. Chem. B 2006, 110, 25356.
M. Klokkenburg, A. J. Houtepen, R. Koole, J. W. J. de Folter,
B. H. Erné, E. van Faassen, D. Vanmaekelbergh, Nano Lett.
2007, 7, 2931.
[51]
[52]
[53]
W. Zhu, W. Wang, J. Shi, J. Phys. Chem. B 2006, 110, 9785.
J. P. Ge, Y. D. Li, J. Mater. Chem. 2003, 13, 911.
Eur. J. Inorg. Chem. 2011, 2984–2990
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
2989