Journal of Medicinal Chemistry
Article
prognostic model to predict survival in primary myelofibrosis: a study
by the IWG-MRT (International Working Group for Myeloprolifer-
ative Neoplasms Research and Treatment). Blood 2010, 115, 1703−
1708.
(7) (a) Kiss, R.; Sayeski, P. P.; Keseru, G. M. Recent developments
on JAK2 inhibitors: a patent review. Expert Opin. Ther. Pat. 2010, 20,
471−495. and the references cited therein (b) Lucia, E.; Recchia, A.
G.; Gentile, M.; Bossio, S.; Vigna, E.; Mazzone, C.; Madeo, A.;
Morabito, L.; Gigliotti, V.; deStefano, L.; Caruso, N.; Servillo, P.;
Franzese, S.; Bisconte, M. G.; Gentile, C.; Morabito, F. Janus kinase 2
inhibitors in myeloproliferative disorders. Expert Opin. Invest. Drugs
2011, 20, 41−59 and the references cited therein..
(8) Verstovsek, S.; Kantarjian, H.; Mesa, R. A.; Pardanani, A. D.;
Cortes-Franco, J.; Thomas, D. A.; Estrov, Z.; Fridman, J. S.; Bradley, E.
C.; Erickson-Viitanen, S.; Vaddi, K.; Levy, R.; Tefferi, A. Safety and
efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis.
N. Engl. J. Med. 2010, 363, 1117−1127.
(9) Lasho, T. L.; Tefferi, A.; Hood, J. D.; Verstovsek, S.; Gilliland, D.
G.; Pardanani, A. TG101348, a JAK2-selective antagonist, inhibits
primary hematopoietic cells derived from myeloproliferative disorder
patients with JAK2V617F, MPLW51 or JAK2 exon 12 mutations as
well as mutation negative patients. Leukemia 2008, 22, 1790−1792.
(10) Santos, F. P.; Kantarjian, H. M.; Jain, N.; Manshouri, T.;
Thomas, D. A.; Garcia-Manero, G.; Kennedy, D.; Estrov, Z.; Cortes, J.;
Verstovsek, S. Phase 2 study of CEP-701, an orally available JAK2
inhibitor, in patients with primary or post-polycythemia vera essential
thrombocythemia myelofibrosis. Blood 2010, 115, 1131−1136.
(11) Tyner, J. W.; Bumm, T. G.; Deininger, J.; Wood, L.; Aichberger,
K. J.; Loriaux, M. M.; Druker, B. J.; Burns, C. J.; Fantino, E.; Deininger,
M. W. CYT387, a novel JAK2 inhibitor, induces hematologic
responses and normalizes inflammatory cytokines in murine
myeloproliferative neoplasms. Blood 2010, 115, 5232−5240.
(12) Hart, S.; Goh, K. C.; Novotny-Diermayr, V.; Hu, C. Y.; Hentze,
H.; Tan, Y. C.; Madan, B.; Amalini, C.; Loh, Y. K.; Ong, L. C.; William,
A. D.; Lee, A.; Poulsen, A.; Jayaraman, R.; Ong, K. H.; Ethirajulu, K.;
Dymock, B. W.; Wood, J. W. SB1518, a novel macrocyclic pyrimidine-
based JAK2 inhibitor for the treatment of myeloid and lymphoid
malignancies. Leukemia 2011, 25, 1751−1759.
of novel Jak2-Stat pathway inhibitors with extended residence time on
target. Bioorg. Med. Chem. Lett. 2013, 23, 3105−3110.
(17) Ioannidis, S.; Lamb, M. L.; Wang, T.; Almeida, L.; Block, M. H.;
Davies, A. M.; Peng, B.; Su, M.; Zhang, H.-J.; Hoffmann, E.; Rivard,
C.; Green, I.; Howard, T.; Pollard, H.; Read, J.; Alimzhanov, M.;
Bebernitz, G.; Bell, K.; Ye, M.; Huszar, D.; Zinda, M. Discovery of 5-
chloro-N2-[(1S)-1-(5-fluoropyrimidin-2-yl)ethyl]-N4-(5-methyl-1H-
pyrazol-3-yl)pyrimidine-2,4-diamine (AZD1480) as a novel inhibitor
of the Jak/Stat pathway. J. Med. Chem. 2011, 54, 262−276.
(18) (a) Hedvat, M.; Huszar, D.; Herrmann, A.; Gozgit, J. M.;
Schroeder, A.; Sheehy, A.; Buettner, R.; Proia, D.; Kowolik, C. M.; Xin,
H.; Armstrong, B.; Bebernitz, G.; Weng, S.; Wang, L.; Ye, M.;
McEachern, K.; Chen, H.; Morosini, D.; Bell, K.; Alimzhanov, M.;
Ioannidis, S.; McCoon, P.; Cao, Z. A.; Yu, H.; Jove, R.; Zinda, M. The
JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and
oncogenesis in solid tumors. Cancer Cell 2009, 16, 487−497.
(b) Gozgit, J. M.; Bebernitz, G.; Patil, P.; Ye, M.; Wu, J.; Su, N.;
Wang, T.; Ioannidis, S.; Davies, A. M.; Huszar, D.; Zinda, M. Effects of
the JAK2 inhibitor, AZ960, on Pim/BAD/BCL-xL survival signaling in
the human JAK2 V617F cell line SET-2. J. Biol. Chem. 2008, 283,
32334−32343.
(19) Gompper, R.; Junius, M.; Wagner, H. U. 2,4,5-Tris-
(diethylamino)-4H-imidazole and derived fulvenes and fulvalene.
Tetrahedron Lett. 1981, 31, 2973−2976.
(20) Reaction did not proceed to completion at lower temperature.
(21) Wang, T.; Lamb, M. L.; Scott, D. A.; Wang, H.; Block, M. H.;
Lyne, P. D.; Lee, J. W.; Davies, A. M.; Zhang, H-J; Zhu, Y.; Gu, F.;
Han, Y.; Wang, B.; Mohr, P. J.; Kaus, R. J; Josey, J. A.; Hoffmann, E.;
Thress, K.; MacIntyre, T.; Wang, H.; Omer, C. A.; Yu, D.
Identification of 4-aminopyrazolylpyrimidines as potent inhibitors of
Trk kinases. J. Med. Chem. 2008, 51, 4672−4684.
(22) Compound 28 was prepared using the procedure described in:
Almeida, L.; Chuaqui, C. E.; Ioannidis, S.; Peng, B.; Su, M. Preparation
of 2,4-diamino-1,3,5-triazine derivatives as JAK inhibitors. PCT Int.
Appl. WO 2009150462 A1 20091217, 2009.
(23) Pierce, A. C.; Sandretto, K. L.; Bemis, G. W. Kinase inhibitors
and the case for CH···O hydrogen bonds in protein−ligand binding.
Proteins 2002, 49, 567−576.
(24) Beattie, J. F.; Breault, G. A.; Ellston, R. P.; Green, S.; Jewsbury,
P. J.; Midgley, C. J.; Naven, R. T.; Minshull, C. A.; Pauptit, R. A.;
Tucker, J. A.; Pease, J. E. Cyclin-dependent kinase 4 inhibitors as a
treatment for cancer. Part 1: identification and optimization of
substituted 4,6-bis anilino pyrimidines. Bioorg. Med. Chem. Lett. 2003,
13, 2955−2960.
(25) Yun, C. H.; Boggon, T. J.; Li, Y.; Woo, M. S.; Greulich, H.;
Meyerson, M.; Eck, M. J. Structures of lung cancer-derived EGFR
mutants and inhibitor complexes: mechanism of activation and insights
into differential inhibitor sensitivity. Cancer Cell 2007, 11, 217−227.
(26) Glide, version 4.5; Schrodinger, LLC: New York, 2010.
(27) Lyne, P. D.; Lamb, M. L.; Saeh, J. C. Accurate prediction of the
relative potencies of members of a series of kinase inhibitors using
molecular docking and MM-GBSA scoring. J. Med. Chem. 2006, 49,
4805−4808.
(13) Ma, L.; Zhao, B.; Walgren, R.; Clayton, J. A.; Blosser, W. D.;
Burkholder, T. P.; Smith, M. C. Efficacy of LY2784544, a small
molecule inhibitor selective for mutant JAK2 kinase, in JAK2 V617F-
induced hematologic malignancy models. Ann. Meet. Abstr. 2010, 116,
4087.
(14) Purandare, A. V.; McDevitt, T. M.; Wan, H.; You, D.;
Penhallow, B.; Han, X.; Vuppugalla, R.; Zhang, Y.; Ruepp, S.; Trainor,
G. L.; Lombardo, L.; Pedicord, D.; Gottardis, M. M.; Ross-Macdonald,
P.; de Silva, H.; Hosbach, J.; Emanuel, S. L.; Blat, Y.; Fitzpatrick, E.;
Taylor, T. L.; McIntyre, K. W.; Michaud, E.; Mulligan, C.; Lee, F. Y.;
Woolfson, A.; Lasho, T. L.; Pardanani, A.; Tefferi, A.; Lorenzi, M. V.
Characterization of BMS-911543, a functionally selective small-
molecule inhibitor of JAK2. Leukemia 2012, 26, 280−288.
(15) Tam, C. S.; Verstovsek, S. Investigational Janus kinase
inhibitors. Expert Opin. Invest. Drugs 2013, 687−699 and the
references cited therein..
(16) (a) Ioannidis, S.; Lamb, M. L.; Davies, A. M.; Almeida, L.; Su,
M.; Bebernitz, G.; Ye, M.; Bell, K.; Alimzhanov, M.; Zinda, M.
Discovery of pyrazol-3-ylamino pyrazines as novel JAK2 inhibitors.
Bioorg. Med. Chem. Lett. 2009, 19, 6524−6528. (b) Ioannidis, S.;
Lamb, M. L.; Almeida, L.; Guan, H.; Peng, B.; Bebernitz, G.; Bell, K.;
Alimzhanov, M.; Zinda, M. Replacement of pyrazol-3-yl amine hinge
binder with thiazol-2-yl amine: discovery of potent and selective JAK2
inhibitors. Bioorg. Med. Chem. Lett. 2010, 20, 1669−1673. (c) Wang,
T.; Ioannidis, S.; Almeida, L.; Block, M. H.; Davies, A. M.; Lamb, M.
L.; Scott, D. A.; Su, M.; Zhang, H.-J.; Alimzhanov, M.; Bebernitz, G.;
Bell, K.; Zinda, M. In vitro and in vivo evaluation of 6-aminopyrazolyl-
pyridine-3-carbonitriles as JAK2 kinase inhibitors. Bioorg. Med. Chem.
Lett. 2011, 21, 2958−2961. (d) Guan, H.; Lamb, M.; Peng, B.; Huang,
S.; DeGrace, N.; Read, J.; Hussain, S.; Wu, J.; Rivard, C.; Alimzhanov,
M.; Bebernitz, G.; Bell, K.; Ye, M.; Zinda, M.; Ioannidis, S. Discovery
́ ́
(28) Gutierrez-de-Teran, H.; Aqvist, J. Linear interaction energy:
method and applications in drug design. Methods Mol. Biol. 2012, 819,
305−323.
(29) Bissantz, C.; Kuhn, B.; Stahl, M. A medicinal chemist’s guide to
molecular interactions. J. Med. Chem. 2010, 53, 5061−5084.
(30) Results of the Millipore Kinase Profiler selectivity screening of a
diverse kinase set (n = 83) at 0.1 μM of 19a were depicted in the
following figure, with hits overlaid on the kinome phylogenetic tree
using Millipore’s DART visualization tool. Red spheres highlight
kinases for which the residual activity remaining after treatment with
19a at a concentration of 0.1 μM was less than 30% of DMSO control.
157
dx.doi.org/10.1021/jm401546n | J. Med. Chem. 2014, 57, 144−158