1762
M. Yu et al. / Bioorg. Med. Chem. Lett. 20 (2010) 1758–1762
9. Davies, J. S.; Kotokorpi, P.; Eccles, S. R.; Barnes, S. K.; Tokarczuk, P. F.; Allen, S.
125
100
75
K.; Whiteworth, H. S.; Guschina, I. A.; Evans, B. A. J.; Mode, A.; Zigman, J. M.;
Welss, T. Mol. Endocrinol. 2009, 23, 914.
10. Wren, A. M.; Seal, L. J.; Cohen, M. A.; Brynes, A. E.; Frost, G. S.;
Murphy, K. G.; Dhillo, W. S.; Ghatei, M. A.; Bloom, S. R. J. Clin.
Endocrinol. Metab. 2001, 86, 5992.
11. For recent reviews, see (a) DeVriese, C.; Delporte, C. Curr. Opin. Clin. Nutr. 2007,
10, 615; (b) Cummings, D. E.; Foster-Schubert, K. E.; Overduin, J. Curr. Drug
Targets 2005, 6, 153.
50
12. (a) Rosita, D.; DeWit, M. A.; Luyt, L. G. J. Med. Chem. 2009, 52, 2196; (b) Moulin,
A.; Demange, L.; Ryan, J.; M’Kadmi, C.; Galleyrand, J.-C.; Martinez, J.; Fehrentz,
J.-A. Bioorg. Med. Chem. Lett. 2008, 18, 164; (c) Moulin, A.; Demange, L.; Berge,
G.; Gagne, D.; Ryan, J.; Mousseaux, D.; Heitz, A.; Perrissoud, D.; Locatelli, V.;
Torsello, A.; Galleyrand, J.-C.; Fehrentz, J.-A.; Martinez, J. J. Med. Chem. 2007, 50,
5790; (d) Rudolph, J.; Esler, W. P.; O’connor, S.; Coish, P. D. G.; Wickens, P. L.;
Brands, M.; Bierer, D. E.; Bloomquist, B. T.; Bondar, G.; Chen, L.; Chuang, C.;
Claus, T. H.; Fathi, Z.; Fu, W.; Khire, U. R.; Kristie, J. A.; Liu, X.; Lowe, D. B.;
McClure, A. C.; Michels, M.; Ortiz, A. A.; Ramsden, P. D.; Schoenleber, R. W.;
Shelekhin, T. E.; Vakalopoulos, A.; Tang, W.; Wang, L.; Yi, L.; Gardell, S. J.;
Livingston, J. N.; Sweet, L. J.; Bullock, W. H. J. Med. Chem. 2007, 50, 5202; (e)
Esler, W. P.; Rudolph, J.; Claus, T. H.; Tang, W.; Barucci, N.; Brown, S.; Bullock,
W.; Daly, M.; Decarr, L.; Li, Y.; Milardo, L.; Molstad, D.; Zhu, J.; Gardell, S. J.;
Livingston, J. N.; Sweet, L. J. Endocrinology 2007, 148, 5175; (f) Serby, M. D.;
Zhao, H.; Szczepankiewicz, B. G.; Kosogof, C.; Xin, Z.; Liu, B.; Liu, M.; Nelson, L.
T. J.; Kaszubska, W.; Falls, H. D.; Schaefer, V.; Bush, E.; Shapiro, R.; Droz, B. A.;
Knourek-Segel, V. E.; Fey, T. A.; Brune, M. E.; Beno, D. W. A.; Turner, T. M.;
Collins, C. A.; Jacobson, P. B.; Sham, H. L.; Liu, G. J. Med. Chem. 2005, 49, 2568;
(g) Xin, Z.; Zhao, H.; Serby, M. D.; Liu, B.; Schaefer, V. G.; Falls, D. H.; Kaszubska,
W.; Colins, C. A.; Sham, H. L.; Liu, G. Bioorg. Med. Chem. Lett. 2005, 15, 1201; (h)
Bernasconi, G.; Bromidge, S. M.; Carpenter, A. J.; D’Adamo, L.; Di Fabio, R.;
Guery, S.; Pavone, F.; Pozzan, A.; Rinaldi, M.; Sabbatini, F. M.; St-Denis, Y. PCT
Int. Appl. 2008, WO 2008148854 A1.; (i) Heightman, T. D. PCT Int. Appl. 2008,
WO 2008148856 A1.
25
0
-25
-4
-2
0
2
Log [CMPD] µM
Figure 5. Antagonist effect of compound 8b on rghrelin (0.2
hormone (GH) release in primary rat pituitary cells. Values were the means of three
determinations, p <0.005; see Ref. 18 for assay protocol.
l
M) induced growth
secretion at up to 10
the stimulating effect of ghrelin (0.2
pituitary cells (IC50 = 93 nM), as shown in Figure 5.
l
M concentration. It could also antagonize
M) on GH release from rat
l
In summary, we optimized a series of piperazine-bisamide
based GHSR inhibitors for potency and removed the partial agonist
activity seen with the early lead compounds in the IP assays. The
efforts led to the discovery of tool compound 8b, which was fea-
tured with high potency, satisfactory PK profile and sufficient
CNS exposure in mdr1a knockout mice. The compound was also
confirmed to be an antagonist in the ex vivo study of GH release
from isolated primary rat pituitary cells. Compound 8b was proved
to be a useful tool for evaluation in in vivo proof-of-concept studies
in mouse, and the results will be published in due course.
13. This aequorin flash luminescence (Aeq) assay used
a CHO-K1 cell line
expressing the human ghrelin receptor and the aequorin gene (purchased
from Euroscreen, Belgium). The assay was performed as previously described
by An et al. and Bandoh et al.: (a) An, S.; Bleu, T.; Zheng, Y.; Goetzl, E. J. Mol.
Pharm. 1998, 54, 881; (b) Bandoh, K.; Aoki, J.; Hosono, H.; Kobayashi, S.;
Kobayashi, T.; Murakami-Murofushi, K.; Tsujimoto, M.; Arai, H.; Inoue, K. J. Biol.
Chem. 1999, 274, 27776.
14. These assays measured the relative magnitude of inositol phosphate (IP)
accumulation that induced by subject compounds as percentage of the
maximal ghrelin’s response at concentrations of 10, 1.0, and 0.1 lM. The
assay protocol was as the following: The CHO cells stably expressing human or
rat GHSR placed in 96-well TC plates were incubated for 12 h with 3H inositol
(1 lCi/mL in DMEM solution). The cells were then incubated with ghrelin or
Acknowledgments
subject compounds at 37 °C for 1.0 h followed by treatment with 20 mM
formic acid at 4 °C for 4 h. The formic acid solution was extracted to Amersham
SPA beads pre-placed in 96-well plates. After incubation in dark for 12 h,
radioactivity was counted on Top Counting.
We thank Dr. Jiwen Liu and Dr. Songli Wang for constructive
discussions.
15. Compound 1a also behaved as a partial agonist in the IP assay with CHO cells
References and notes
stably expressing rat GHSR. In this assay 1a was evaluated at 10
and 0.1 M and afforded a 14%, 14%, and 24% in IP accumulation relative to
ghrelin’s maximal response, respectively.
lM, 1.0 lM,
l
1. Marshall, E. Science 2004, 304, 804.
2. (a) Ogden, C. L.; Carroll, M. D.; Curtin, L. R. J. Am. Med. Assoc. 2006, 295, 1549; (b)
Melnikova, I.; Wages, D. Nat. Rev. Drug Disc. 2006, 5, 369; (c) Baskin, M. L.; Ard,
J.; Franklin, F.; Allison, D. B. Diabetes Rev. 2005, 6, 5.
3. Gale, S. M.; Castracane, V. D.; Mantzoros, C. S. J. Nutr. 2004, 134, 295.
4. A representative example is the vascular heart disease associated with the
combined use of fenfluramine and phentermine, see: (a) Connolly, H.; Cray, J.
L.; Mcgoon, M. D.; Hensrud, D. D.; Edwards, B. S.; Edwards, W. D.; Schaff, H. V.
N. Eng. J. Med. 1997, 37, 581–588; For other examples, see: (b) Padwal, R.;
Majumdar, S. The Lancet 2007, 369, 71; (c) Nisoli, E.; Carruba, M. O. Obes. Rev.
2001, 1, 127; (d) Kolanowski, J. Drug Safety 1999, 20, 119.
5. Bray, G. A.; Greenway, F. L. Endocr. Rev. 1999, 20, 805.
6. Kojima, M.; Hosoda, H.; Date, Y.; Nakazato, M.; Matsuo, H.; Kangawa, K. Nature
1999, 402, 656.
7. (a) Jeffery, P. L.; Herington, A. C.; Chopin, L. K. J. Endocrinol. 2002, 172, R7; (b)
Zigman, J. M.; Jones, F. E.; Lee, C. E.; Saper, C. B.; Elmquist, J. K. J. Comp. Neurol.
2006, 294, 528.
8. (a) Cummings, D. E.; Overduin, J.; Foster-Schubert, K. E. Curr. Opin. Endocr.
Diabetes 2005, 12, 72; (b) Camina, J. P.; Carreira, M. C.; El Messari, S.; Llorens-
Cortes, C.; Smith, R. G.; Casanueva, F. F. Endocrinology 2004, 145, 930–940; (c)
Nakazato, M.; Murakami, N.; Date, Y.; Kojima, Y.; Matsuo, H.; Kangawa, K.;
Matsukura, S. Nature 2001, 409, 194; (d) Wren, A. M.; Small, C. L.; Abbott, C. R.;
Dhillo, W. S.; Seal, L. J.; Cohen, M. A.; Batterham, R. L.; Taheri, S. A.; Ghatei, M.
A.; Bloom, S. R. Diabetes. 2001, 50, 2540; (e) Hataya, Y.; Akamizu, T.; Takaya, K.;
Kanamoto, N.; Ariyasu, H.; Saijo, M.; Moriyama, K.; Shimatsu, A.; Kojima, M.;
Kangawa, K.; Nakao, K. J. Clin. Endocrinol. Metab. 2001, 86, 4552; (f) Peino, R.;
Baldelli, R.; Rodriguez-Garcia, J.; Rodriguez-Segade, S.; Kojima, M.; Kangawa,
K.; Arvat, E.; Ghigo, E.; Dieguez, C.; Casanueva, F. F. Eur. J. Endocrinol. 2000, 143,
R11; (g) TschoP, M.; Smiley, D. L.; Heiman, M. L. Nature 2000, 407, 908.
16. Compound 3h displayed reasonable rodent PK profile (rat iv @ 2.0 mg/kg:
Cl = 2.1 L/h/kg, MRT = 1.9 h, Vdss = 3.7 L/kg; po @ 0.5 mg/kg: F = 17%), sufficient
brain uptake (brain/plasma AUC ratio = 0.26 in FVB mice), and high potency
across species (IC50 = 2.0 nM in rat aequorin assay). This compound had no
hERG or CYP inhibition liability (IC50 > 10
17. Compound 3h afforded a 33%, 42%, and 41% relative to ghrelin’s maximal
increase in the IP assay using CHO cells stably expressing rat GHSR at 10 M,
1.0 M, and 0.1 M, respectively.
18. The assay protocol was as the following: pituitary cells freshly collected from
6–8 weeks old male SD rats were plated onto 96-well poly- -lysine coated
lM).
l
l
l
D
plates and incubated at 37 °C for 3 days. The cells were then washed with
DMEM assay buffer containing 20 mM Hepes and 0.3% BSA, and incubated at
37 °C for 5 min. For agonist activity experiment, the cells were treated with rat
ghrelin or subject compounds for 20 min. For antagonist activity experiment
(8b), the cells were pretreated with the subject compounds for 10 min before
co-incubation with rat ghrelin and the subject compounds for additional
20 min. The sample was taken for rat growth hormone secretion readout by
RIA assay (LINCO Research).
19. The analytic data for compound 8b: 1H NMR (500 MHz, CDCl3): d ppm 1.24 (br s,
3H), 2.97–3.78 (m, 4H), 4.16–4.80 (m, 3H), 6.53 (br s, 1H), 7.08 (d, J = 8.1 Hz,
1H), 7.22–7.27 (m, 1H), 7.29 (dd, J = 7.7, 7.7, 2 Hz), 7.42–7.57 (m, 4H), 7.61 (d,
J = 8.1 Hz, 1H), 8.69 (m, J = 5.0 Hz, 2H), 9.92 (br s, 1H); LC/MS: MS ESI (pos) m/e:
443.2 (M+H)+.
20. The cell membrane permeability of this compound in the human MDR1–MDCK
cell assay is: PaapB-A/PaapA-B = 1.7.
21. This lead series (e.g., 1a, 3a–n) is highly selective (Ki > 10
5HT2 5HT2 SERT, Adr 2A, D2, D3, DAT, Opioid Opioid
NET, and H2.
l
M) over
a,
v
,
a
l
,
j,
M3,