4692 Journal of Medicinal Chemistry, 2009, Vol. 52, No. 15
Stroba et al.
5.1.2.5. (Z)-5-(2,4-Dichlorophenyl)-3-phenylpent-2-enoic Acid
(8Z). Synthesized according to method D using compound 8Za
(0.10 g, 0.31 mmol) and NaOHaq (0.32 mL, 0.93 mmol); white
Acknowledgment. We thank Prof. Dr. S. Zeuzem for his
generous support of the R.M.B. lab. We acknowledge
the support by the Deutsche Forschungsgemeinschaft (BI
1
solid; yield: 0.09 g (87%); mp 122-124 °C. H NMR (CDCl3,
1044/2-2), by the Europrofession Foundation (Saarbrucken,
ꢀ
¨
Germany) to R.M.B. and M.E., by the Deutsche Jose
500 MHz): δ 2.67-2.74 (m, 4H), 5.88 (s, 1H), 7.03 (d, 3J =
8.2 Hz, 1H), 7.14 (dd, 3J=2.2, 4J=8.2 Hz, 1H), 7.19-7.21 (m,
2H), 7.33-7.39 (m, 4H). 13C NMR (CDCl3, 125 MHz): δ 32.5,
40.2, 116.9, 127.1, 127.3, 128.2, 128.4, 129.4, 131.1, 132.7, 134.5,
138.7, 141.4, 160.5, 176.5. LC/MS (þESI): m/z 322.7 [MHþ];
Rt=14.63 (g98%).
Carreras Leukamie-Stiftung (DJCLS R 06/07) to M.E., and
by the GoBio grant from the German Federal Ministry of
Education and Science to R.M.B. and M.E.
5.1.2.6. (E)-5-(Naphthalen-2-yl)-3-phenylpent-2-enoic Acid
(12E). Synthesized according to method D using compound
12Ea (0.17 g, 0.51 mmol) and NaOHaq (1.70 mL, 5.14 mmol);
white solid; yield: 0.143 g (93%); mp 147-150 °C. H NMR
Supporting Information Available: Synthetic procedures and
NMR spectroscopic data of compounds 2c-14c, 21c, 2b-13b,
15b-18b, 21b, 2a-20a, 21Ea, 3-5Z, 9-11Z, 14-15Z, 18Z, 3-
11E, 13-14E, 18E, 16-17E/Z, 19, 20, 21; 2D-NOESY-1H
NMR spectroscopic data on 2Z/2E. This material is available
1
(CDCl3, 500 MHz): δ 2.91-2.94 (m, 2H), 3.49-3.53 (m, 2H),
6.14 (s, 1H), 7.38-7.44 (m, 6H), 7.51-7.53 (m, 2H), 7.62 (s, 1H),
7.74-7.79 (m, 3H). 13C NMR (CDCl3, 125 MHz): δ 33.3, 35.4,
116.5, 125.2, 126.5, 126.8, 127.2, 127.4, 127.9, 128.4, 128.7,
128.7, 129.4, 130.9, 132.1, 138.6, 138.7, 162.4, 170.9. LC/MS
(þESI): m/z 303.6 [MHþ]; Rt=14.54 (g99%).
References
(1) Cohen, P. Protein kinases;the major drug targets of the twenty-
first century? Nat Rev. Drug Discovery. 2002, 1, 309–315.
(2) Mora, A.; Komander, D.; van Aalten, D. M.; Alessi, D. R. PDK1,
the master regulator of AGC kinase signal transduction. Semin.
Cell. Dev. Biol. 2004, 15, 161–170.
(3) Bayascas, J. R.; Leslie, N. R.; Parsons, R.; Fleming, S.; Alessi,
D. R. Hypomorphic mutation of PDK1 suppresses tumorigenesis
in PTEN(() mice. Curr. Biol. 2005, 15, 1839–1846.
(4) Biondi, R. M.; Cheung, P. C.; Casamayor, A.; Deak, M.; Currie,
R. A.; Alessi, D. R. Identification of a pocket in the PDK1 kinase
domain that interacts with PIF and the C-terminal residues of
PKA. EMBO J. 2000, 19, 979–988.
(5) Biondi, R. M.; Kieloch, A.; Currie, R. A.; Deak, M.; Alessi, D. R.
The PIF-binding pocket in PDK1 is essential for activation of S6K
and SGK but not PKB. EMBO J. 2001, 20, 4380–4390.
(6) Frodin, M.; Antal, T. L.; Dummler, B. A.; Jensen, C. J.; Deak, M.;
Gammeltoft, S.; Biondi, R. M. A phosphoserine/threonine-bind-
ing pocket in AGC kinases and PDK1 mediates activation by
hydrophobic motif phosphorylation. EMBO J. 2002, 21, 5396–
5407.
(7) Biondi, R. M.; Komander, D.; Thomas, C. C.; Lizcano, J. M.; Deak,
M.; Alessi, D. R.; van Aalten, D. M. High resolution crystal
structure of the human PDK1 catalytic domain defines the regula-
tory phosphopeptide docking site. EMBO J. 2002, 21, 4219–4228.
(8) Balendran, A.; Biondi, R. M.; Cheung, P. C.; Casamayor, A.;
Deak, M.; Alessi, D. R. A 3-phosphoinositide-dependent protein
kinase-1 (PDK1) docking site is required for the phosphorylation
of protein kinase Czeta (PKCzeta) and PKC-related kinase 2 by
PDK1. J. Biol. Chem. 2000, 275, 20806–20813.
(9) Collins, B. J.; Deak, M.; Arthur, J. S.; Armit, L. J.; Alessi, D. R. In
vivo role of the PIF-binding docking site of PDK1 defined by
knock-in mutation. EMBO J. 2003, 22, 4202–4211.
(10) Feldman, R. I.; Wu, J. M.; Polokoff, M. A.; Kochanny, M. J.;
Dinter, H.; Zhu, D.; Biroc, S. L.; Alicke, B.; Bryant, J.; Yuan, S.;
Buckman, B. O.; Lentz, D.; Ferrer, M.; Whitlow, M.; Adler, M.;
Finster, S.; Chang, Z.; Arnaiz, D. O. Novel small molecule
inhibitors of 3-phosphoinositide-dependent kinase-1. J. Biol.
Chem. 2005, 280, 19867–19874.
5.1.2.7. (Z)-5-(Naphthalen-2-yl)-3-phenylpent-2-enoic Acid
(12Z). Synthesized according to method D using compound
12Za (0.180 g, 0.54 mmol) and NaOHaq (1.80 mL, 5.45 mmol);
1
white solid; yield: 0.150 g (92%); mp 117-120 °C. H NMR
(CDCl3, 500 MHz): δ 2.84-2.89 (m, 4H), 5.92 (s, 1H), 7.21 (dd,
4J=1.7, 3J=8.2 Hz, 2H), 7.30-7.47 (m, 6H), 7.47-7.52 (m, 1H),
7.55 (s, 1H), 7.74-7.82 (m, 2H). 13C NMR (CDCl3, 125 MHz):
δ 34.1, 42.5, 116.9, 125.6, 126.3, 126.7, 127.2, 127.5, 127.7, 127.9,
128.3, 128.4, 128.5, 128.7, 133.8, 138.3, 139.4, 159.8, 173.3. LC/
MS (þESI): m/z 303.5 [MHþ]; Rt=14.02 (g98%).
5.1.2.8. (Z)-5-(1H-Indol-3-yl)-3-phenylpent-2-enoic Acid
(13Z). Synthesized according to method D using compound
13Za (0.20 g, 0.63 mmol) and NaOHaq (0.65 mL, 1.89 mmol);
1
white solid; yield: 0.135 g (73%); mp 160-162 °C. H NMR
(CD3OD, 500 MHz): δ 2.68-2.71 (m, 2H), 2.79-2.82 (m, 2H),
5.89 (s, 1H), 7.05 (t, 3J=7.9 Hz, 1H), 6.95 (dt, 4J=0.9, 3J=7.6 Hz,
1H), 7.05 (dt, 4J=0.9, 3J=7.6 Hz, 1H), 7.10-7.11 (d, 4J=2.2 Hz,
1H), 7.23-7.25 (m, 2H), 7.29-7.38 (m, 4H), 7.41 (d, 3J=7.9 Hz,
1H), 10.78 (s, NH), 11.85 (s, OH). 13C NMR (CD3OD, 125
MHz): δ 24.6, 42.3, 112.2, 115.1, 118.7, 119.2, 119.5, 122.3, 123.0,
128.5, 128.6, 128.7, 128.9, 138.2, 141.4, 160.7, 169.8. LC/MS
(þESI): m/z 292.5 [MHþ]; Rt=11.93 (g94%).
5.2. Biology. 5.2.1. Protein Kinases and Kinase Assays. All
procedures were performed exactly as described previously.22 In
brief, PDK1 mutants were generated using site directed mutagen-
esis. Wild type and mutant protein kinases were expressed in
HEK293 cells after transient transfection as GST fusion proteins
and purified using glutathione sepharose. Cell-free protein kinase
activity assays were performed using T308tide as a substrate
peptide, and started using γ32P-ATP. Phosphorylated peptides
were spotted on P81 phosphocellulose paper (Whatman), washed
by diluted phosphoric acid and incorporated 32P quantified in a
PhosphoImager.
(11) Islam, I.; Bryant, J.; Chou, Y. L.; Kochanny, M. J.; Lee, W.;
Phillips, G. B.; Yu, H.; Adler, M.; Whitlow, M.; Ho, E.; Lentz, D.;
Polokoff, M. A.; Subramanyam, B.; Wu, J. M.; Zhu, D.; Feldman,
R. I.; Arnaiz, D. O. Indolinone based phosphoinositide-dependent
kinase-1 (PDK1) inhibitors. Part 1: design, synthesis and biological
activity. Bioorg. Med. Chem. Lett. 2007, 17, 3814–3818.
(12) Sato, S.; Fujita, N.; Tsuruo, T. Interference with PDK1-Akt
survival signaling pathway by UCN-01 (7-hydroxystaurosporine).
Oncogene 2002, 21, 1727–1738.
5.2.2. Isothermal Titration Calorimetry. The association reac-
tions of PDK1 with the Z isomers were quantified by isothermal
titration calorimetry using the high precision VP-ITC titration
calorimetric system (MicroCal Inc., MA) and protocols pre-
viously described.41 Briefly, PDK150-359 and the compounds
were dissolved in the same buffer (50 mM TrisHCl, pH 7.5,
200 mM NaCl, 1 mM DTT). The binding enthalpies were
obtained by injecting the activators (450 μM) into the calori-
metric cell containing the enzyme (20 μM). The solutions
were thoroughly degassed under vacuum, and each experiment
was performed at 20 °C by one injection of 2 μL followed by
29 injections of 10 μL with 210 s between injections using a
290 rpm rotating syringe. Heat signals were corrected for the
heats of dilution and normalized to the amount of compound
injected. Normalization and deconvolution of the binding
isotherms was carried out using Origin742 provided by the
manufacturer.
(13) Stauffer, F.; Maira, S. M.; Furet, P.; Garcia-Echeverria, C. Imi-
dazo[4,5-c]quinolines as inhibitors of the PI3K/PKB-pathway.
Bioorg. Med. Chem. Lett. 2008, 18, 1027–1030.
(14) Peifer, C.; Alessi, D. R. Small-Molecule Inhibitors of PDK1.
ChemMedChem 2008, 3, 1810–1838.
(15) Sausville, E. A.; Arbuck, S. G.; Messmann, R.; Headlee, D.; Bauer,
K. S.; Lush, R. M.; Murgo, A.; Figg, W. D.; Lahusen, T.; Jaken, S.;
Jing, X.; Roberge, M.; Fuse, E.; Kuwabara, T.; Senderowicz, A. M.
Phase I trial of 72-h continuous infusion UCN-01 in patients with
refractory neoplasms. J. Clin. Oncol. 2001, 19, 2319–2333.
(16) Welch, S.; Hirte, H. W.; Carey, M. S.; Hotte, S. J.; Tsao, M. S.;
Brown, S.; Pond, G. R.; Dancey, J. E.; Oza, A. M. UCN-01 in
combination with topotecan in patients with advanced recurrent