X. Liang et al. / Tetrahedron Letters 51 (2010) 2505–2507
2507
MacMillan, D. W. C. J. Am. Chem. Soc. 2006, 128, 9328; (j) Lee, S.; MacMillan, D.
W. C. Tetrahedron 2006, 62, 11413.
6. Wiberg, K. B.; Rablen, P. R. J. Am. Chem. Soc. 1995, 117, 2201. and references cited
herein.
7. (a) Huang, Y.; Waiji, A. M.; Larsen, C. H.; MacMillan, D. W. C. J. Am. Chem. Soc.
2005, 127, 15051; (b) Ahrendt, K. A.; Borths; MacMillan, D. W. C. J. Am. Chem. Soc.
2000, 122, 4243.
8. (a) Brown, S. P.; Goodwin, N. C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2003, 125,
1192; (b) Ouellet, S. G.; Walji, A. M.; MacMillan, D. W. C. Acc. Chem. Res. 2007, 40,
1327; (c) Lelais, G.; MacMillan, D.W.C. New Frontiers in Asymmetric Catalysis;
John Wiley Sons, Inc., 2007; p 313; (d) Northrup, A. B.; MacMillan, D. W. C. J. Am.
Chem. Soc. 2002, 124, 2458.
catalytic activity and increased iminium geometry control in the
transition state.
In summary, we developed novel organocatalyst imidazolethi-
ones which were efficient to promote the enantioselective Fri-
edel–Crafts alkylation of pyrroles and
a,b-unsaturated aldehydes
with moderate to excellent yields and high enantioselectivities,
especially for the aliphatic unsaturated aldehydes.9 Further, thriv-
ing area of catalysis concepts and widely applicable reactions
based on these catalysts are going in our studies.
9. Typical procedure for the synthesis of imidazolethione 2a: A mixture of P2S5 (3.0 g,
13.5 mmol) and Al2O3 (5.0 g, 49.0 mmol) was ground continuously in a mortar
until a fine, homogeneous powder was obtained. Then, P2S5/Al2O3 (2 g, 5 mmol)
was added to the solution of imidazolidinone 1a (1.1 g, 5 mmol) in 30 mL
toluene. The reaction mixture was stirred at refluxing for the given time under
nitrogen (monitored by TLC). The reaction mixture was filtrated, the solvent was
evaporated under vacuum, and the residue was purified by flash column
chromatography over silica gel (petroleum ether/CH2Cl2/AcOEt 4:1:1) to afford
the corresponding imidazolethione 2a in 89% yield.
Acknowledgment
We thank the Zhejiang Natural Science Foundation (Y407287)
for financial support.
Supplementary data
(S)-5-Benzyl-2,2,3-trimethylimidazolidine-4-thione (2a): Yellow oil. Yield: 89%;
1H NMR (400 MHz, CDCl3): d (ppm) = 7.30–7.22 (m, 5H), 4.15 (t, J = 6.8 Hz, 1H),
3.50 (dd, J1 = 4.4 Hz, J2 = 14.0 Hz, 1H), 3.17 (dd, J1 = 6.8 Hz, J2 = 14.0 Hz, 1H), 3.16
(s, 3H), 1.78 (br s, 1H), 1.31 (s, 3H), 1.30 (s, 3H); 13C NMR (100 MHz, CDCl3): d
(ppm) = 200.0, 137.1, 129.4, 128.5, 126.8, 83.8, 70.0, 39.3, 30.9, 26.5, 24.7; MS
(EI): m/z (%) = 234(96, M+), 177(94), 176(81), 160(83), 143(100). HRMS (EI) exact
Supplementary data associated with this article can be found, in
mass calcd for [C13H18N2S]: 234.1191; found: 234.1196. ½a D20
ꢀ139.2 (c 0.87,
ꢁ
References and notes
CHCl3,).
General procedure for the synthesis of 3-(pyrrols-2-yl)-3-arylpropanols 5:
A
1. (a) Bandini, M.; Melloni, A.; Umani-Ronchi, A. Angew. Chem., Int. Ed. 2004, 43,
550; (b) Jørgensen, K. A. Synthesis 2003, 1117; (c) Bandini, M.; Melloni, A.;
Tommasi, S.; Umani-Ronchi, A. Synlett 2005, 1199; (d) Zhuang, W.; Gathergood,
N.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2001, 66, 1009.
2. Paras, N. A.; MacMillan, D. W. C. J. Am. Chem. Soc. 2001, 123, 4370.
3. (a) Wang, W. T.; Liu, X. H.; Cao, W. D.; Wang, J.; Lin, L. L.; Feng, X. M. Chem. Eur. J.
2009; (b) Palomo, C.; Oiarbide, M.; Kardak, B. G.; Garcla, J. M.; Linden, A. J. Am.
Chem. Soc. 2005, 127, 4154; (c) Evans, D. A.; Fandrick, K. R. Org. Lett. 2006, 8,
2249; (d) Cao, C.-L.; Zhou, Y.-Y.; Sun, X.-L.; Tang, Y. Tetrahedron 2008, 64, 10676;
(e) Blay, G.; Fernández, L.; Pedro, J. R.; Vila, C. Org. Lett. 2007, 9, 2601; (f) Singh, P.
K.; Singh, V. K. Org. Lett. 2010, 12, 80.
mixture of catalyst 2a (0.4 mmol), TFA (0.4 mmol), and ,b-unsaturated
a
aldehydes (2 mmol) in THF (4 mL) and H2O (0.6 mL) was stirred for 5 min at
room temperature. Then, the pyrroles (4.5 mmol) were added. The reaction
mixture was stirred at ꢀ20 °C for the given time (monitored by TLC). The
resulting solution was added to equal volume of absolute EtOH and excess of
NaBH4 and stirred for 15 min. The reaction was quenched with saturated
aqueous NaHCO3, extracted with CH2Cl2, and dried over anhydrous Na2SO4. The
solvent was evaporated under vacuum, and the residue was purified by flash
column chromatography over silica gel (AcOEt/petroleum ether 1:6) to provide
products 5.
(S)-3-(4-Chlorophenyl)-3-(1-methyl-1H-pyrrol-2-yl)propan-1-ol (5a): Yellow
oil. Yield: 85%. 1H NMR (400 MHz, CDCl3): d (ppm) = 7.22 (d, J = 8.4 Hz, 2H),
7.07 (d, J = 8.4 Hz, 2H), 6.52 (t, J = 2.0 Hz, 1H), 6.12–6.09 (m, 2H), 4.10 (t,
J = 7.6 Hz, 1H), 3.70–3.64 (m, 1H), 3.58–3.54 (m, 1H), 3.28 (s, 3H), 2.34–
2.26 (m, 1H), 2.07–1.99 (m, 1H), 1.54 (br s, 1H); 13C NMR (100 MHz,
CDCl3): d (ppm) = 142.0, 134.3, 132.0, 129.3, 128.7, 122.0, 106.4, 105.9, 60.3,
38.8, 38.7, 33.8; MS (EI): m/z (%) = 249 (22, M+), 206(35), 204(100); HRMS
4. (a) Bonini, B. F.; Capitò, E.; Comes-Franchini, M.; Fochi, M.; Ricci, A.;
Zwanenburg, B. Tetrahedron: Asymmetry 2006, 17, 3135; (b) Banwell, M. G.;
Beck, D. A. S.; Willis, A. C. Arkivoc 2006, 163.
5. (a) Wilson, R. M.; Jen, W. S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127,
11616; (b) Jen, W. S.; Wiener, J. J. M.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000,
122, 9874; (c) Paras, N. A.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 7894;
(d) Austin, J. F.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 1172; (e) Ouellet,
S. G.; Tuttle, J. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 32; (f) Tuttle, J.
B.; Ouellet, S. G.; MacMillan, D. W. C. J. Am. Chem. Soc. 2006, 128, 12662; (g)
Yang, J. W.; Fonseca, M. T. H.; List, B. J. Am. Chem. Soc. 2005, 127, 15036; (h)
Wang, W.; Li, H.; Wang, J. Org. Lett. 2005, 7, 1637; (i) Chen, Y. K.; Yoshida, M.;
(EI) exact mass calcd for [C14H16ClNO]: 249.0920, found: 249.0927. ½ ꢁ
a 2D0
+91.4 (c 0.51, CHCl3). HPLC condition: Chiralcel AS-H column, isopropanol/
hexanes 10:90, flow rate 1.0 mL/min, UV detection at 214 nm,
tmajor = 6.3 min, tminor = 7.1 min, 91% ee.