Page 7 of 9
Journal of the American Chemical Society
5.
6.
Zhou, Q. L., Privileged Chiral Ligands and Catalysts. Wiley: 2011.
(a) Burk, M. J.; Feaster, J. E.; Nugent, W. A.; Harlow, R. L.,
on catalytic structural diversity and diverse catalytic mechanisms
that control secondary, outer sphere interactions. This is a hallmark
of enzymatic catalysis, where diversity of function on common cata-
lyst scaffolds has emerged alongside an impressive array of catalyst
specificities.32
1
2
3
4
5
6
7
8
Preparation and use of C2-symmetric bis(phospholanes): production of
.alpha.-amino acid derivatives via highly enantioselective hydrogenation
reactions. J. Am. Chem. Soc. 1993, 115, 10125−10138; (b) Junge, K.;
Oehme, G.; Monsees, A.; Riermeier, T.; Dingerdissen, U.; Beller, M.,
Synthesis of new chiral monodentate phosphines and their use in
asymmetric hydrogenation. Tetrahedron Lett. 2002, 43, 4977−4980; (c)
Knowles, W. S.; Sabacky, M. J.; Vineyard, B. D., Catalytic asymmetric
hydrogenation. J. Chem. Soc., Chem. Commun. 1972, 10−11; (d) Togni, A.;
Breutel, C.; Schnyder, A.; Spindler, F.; Landert, H.; Tijani, A., A Novel Easily
Accessible Chiral Ferrocenyldiphosphine for Highly Enantioselective
Hydrogenation, Allylic Alkylation, and Hydroboration Reactions. J. Am.
Chem. Soc. 1994, 116, 4062−4066.
ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the ACS Pub-
lications website.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
7.
(a) Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C. F., Amino Acid
Experimental details, procedures, compound characteriza-
1
tion data, computational details, and copies of H and 13C
Catalyzed Direct Asymmetric Aldol Reactions:ꢀ A Bioorganic Approach to
Catalytic Asymmetric Carbon−Carbon Bond-Forming Reactions. J. Am.
Chem. Soc. 2001, 123, 5260−5267; (b) Tang, Z.; Jiang, F.; Yu, L.-T.; Cui, X.;
Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-Z.; Wu, Y.-D., Novel Small Organic
Molecules for a Highly Enantioselective Direct Aldol Reaction. J. Am. Chem.
Soc. 2003, 125, 5262−5263; (c) Kano, T.; Takai, J.; Tokuda, O.; Maruoka,
K., Design of an Axially Chiral Amino Acid with a Binaphthyl Backbone as
an Organocatalyst for a Direct Asymmetric Aldol Reaction. Angew. Chem.
Int. Ed. 2005, 44, 3055−3057; (d) Zheng, B.-L.; Liu, Q.-Z.; Guo, C.-S.;
Wang, X.-L.; He, L., Highly enantioselective direct aldol reaction catalyzed
by cinchona derived primary amines. Org. Biomol. Chem. 2007, 5,
2913−2915; (e) Trost, B. M.; Brindle, C. S., The direct catalytic asymmetric
aldol reaction. Chem. Soc. Rev. 2010, 39, 1600−1632.
NMR spectra of new compounds (PDF)
X-ray crystallographic data for 2a (CIF)
AUTHOR INFORMATION
Corresponding Author
*matt.sigman@utah.edu
*fdtoste@berkeley.edu
*scott.miller@yale.edu
8.
(a) Ishihara, K.; Yamamoto, H., Bronsted Acid Assisted Chiral
ORCID
Lewis Acid (BLA) Catalyst for Asymmetric Diels-Alder Reaction. J. Am.
Chem. Soc. 1994, 116, 1561−1562; (b) Evans, D. A.; Murry, J. A.; von Matt,
P.; Norcross, R. D.; Miller, S. J., C2-Symmetric Cationic Copper(II)
Complexes as Chiral Lewis Acids: Counterion Effects in the
Enantioselective Diels–Alder Reaction. Angewandte Chemie International
Edition in English 1995, 34, 798−800; (c) Corey, E. J.; Shibata, T.; Lee, T.
W., Asymmetric Diels−Alder Reactions Catalyzed by a Triflic Acid Activated
Chiral Oxazaborolidine. J. Am. Chem. Soc. 2002, 124, 3808−3809; (d) Ma,
S., Asymmetric catalysis of Diels-Alder reaction in Handbook of cyclization
reactions, Vol. 1. Wiley-VCH: Weinheim, 2010.
Junqi Li: 0000-0003-0336-2544
Matthew S. Sigman: 0000-0002-5746-8830
F. Dean Toste: 0000-0001-8018-2198
Scott J. Miller: 0000-0001-7817-1318
Notes
The authors declare no competing financial interest.
9.
Kwon, Y.; Chinn, A. J.; Kim, B.; Miller, S. J., Divergent Control
ACKNOWLEDGMENT
of Point and Axial Stereogenicity: Catalytic Enantioselective C−N Bond‐
Forming Cross‐Coupling and Catalyst‐Controlled Atroposelective
Cyclodehydration. Angew. Chem. Int. Ed. 2018, 57, 6251−6255.
M.S.S., F.D.T., and S.J.M. are grateful to the National Institute of Gen-
eral Medical Sciences of the National Institutes of Health for support
(GM-121383). The authors are grateful to Christopher R. Shugrue, Aa-
ron L. Featherston and Dr. Anthony J. Metrano for preparation of cata-
lysts and helpful discussions. We also would like to thank Dr. Brandon
Q. Mercado for solving our X-ray crystal structures. J.M.C. acknowl-
edges the support of the NSF Graduate Research Fellowship Program.
Computational resources were provided by the Center for High Perfor-
mance Computing at the University of Utah and the Extreme Science
and Engineering Discovery Environment (XSEDE), which is supported
by the NSF (ACI-1548562).
10.
Taylor, R. D.; MacCoss, M.; Lawson, A. D. G., Rings in Drugs. J.
Med. Chem. 2014, 57, 5845−5859.
11.
Enantioselective Mannich-Type Reaction Catalyzed by a Chiral Brønsted
Acid. Angew. Chem. Int. Ed. 2004, 43, 1566−1568; (b) Uraguchi, D.; Terada,
M., Chiral Brønsted Acid-Catalyzed Direct Mannich Reactions via
Electrophilic Activation. J. Am. Chem. Soc. 2004, 126, 5356−5357.
(a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K.,
12.
(a) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M., Complete
Field Guide to Asymmetric BINOL-Phosphate Derived Brønsted Acid and
Metal Catalysis: History and Classification by Mode of Activation; Brønsted
Acidity, Hydrogen Bonding, Ion Pairing, and Metal Phosphates. Chem. Rev.
2014, 114, 9047−9153; (b) Maji, R.; Mallojjala, S. C.; Wheeler, S. E., Chiral
phosphoric acid catalysis: from numbers to insights. Chem. Soc. Rev. 2018,
47, 1142−1158.
REFERENCES
1.
Asymmetric Catalysis I-III.: Suppl. I-II. Springer: Berlin/Heidelberg, 1999.
2. Yamamoto, H.; Carreira, E. M., Comprehensive Chirality. Elsevier
Science: Amsterdam, 2012.
Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Comprehensive
13.
Manning, B. D.; Cantley, L. C., AKT/PKB Signaling: Navigating
Downstream. Cell 2007, 129, 1261−1274.
14.
3.
(a) Canali, L.; C. Sherrington, D., Utilisation of homogeneous
(a) Rueping, M.; Antonchick, A. P.; Theissmann, T., A Highly
and supported chiral metal(salen) complexes in asymmetric catalysis. Chem.
Soc. Rev. 1999, 28, 85−93; (b) Helmchen, G.; Pfaltz, A.,
PhosphinooxazolinesA New Class of Versatile, Modular P,N-Ligands for
Asymmetric Catalysis. Acc. Chem. Res. 2000, 33, 336−345; (c) Noyori, R.;
Takaya, H., BINAP: an efficient chiral element for asymmetric catalysis. Acc.
Chem. Res. 1990, 23, 345−350.
Enantioselective Brønsted Acid Catalyzed Cascade Reaction:
Organocatalytic Transfer Hydrogenation of Quinolines and their
Application in the Synthesis of Alkaloids. Angew. Chem. Int. Ed. 2006, 45,
3683−3686; (b) Shugrue, C. R.; Miller, S. J., Phosphothreonine as a
Catalytic Residue in Peptide-Mediated Asymmetric Transfer
Hydrogenations of 8-Aminoquinolines. Angew. Chem. Int. Ed. 2015, 54,
11173−11176.
4.
Yoon, T. P.; Jacobsen, E. N., Privileged Chiral Catalysts. Science
2003, 299, 1691−1693.
ACS Paragon Plus Environment