Z. Dom´ınguez et al. / Tetrahedron 66 (2010) 2066–2076
2075
(Mþꢁ164), 69 (Mþꢁ188), 41 (Mþꢁ216). Anal. Calcd for
(Mþꢁ68), 187 (Mþꢁ115), 170 (Mþꢁ132), 138 (Mþꢁ164), 69
(Mþꢁ233), 41 (Mþꢁ261). Anal. Calcd for C11H15O4N2SP: C, 43.70%;
H, 5.00%. Found: C, 43.59%; H, 5.16%.
C11H16O2NPS: C, 51.35%; H, 6.27%. Found: C, 51.17%; H, 6.58%.
5.2.6. eq-2-Anilino-2-thio-cis-4,6-dimethyl-1,3,2
phrinane (cis-eq-3). Mp 114–115 ꢀC. Isolated yield (37.5%). 1H NMR
l
5-dioxaphos-
5.2.12. eq-2-p-Nitroanilino-2-thio-cis-4,6-dimethyl-1,3,2
phosphinane (cis-eq-6). Mp 133–136 ꢀC. Isolated yield (13.6%). 1H
l
5-dioxa-
d
1.38 (dd, 6H), 1.71 (dt, 1H), 1.82 (dq, 1H), 4.88 (m, 2H), 5.44 (d,
2JHP¼13.9 Hz, NH), 7.04 (m, 3H), 7.28 (m, 2H); 13C NMR
d
22.2 (d,
NMR d 1.41 (dd, 6H),1.78 (dt,1H),1.91 (dq,1H), 4.89 (m, 2H), 6.04 (d,
3
3
C7,8), 41.2 (d, C5), 74.0 (d, C4,6), 119.4 (d, Cortho), 123.0 (s, Cpara), 129.1
2JHP¼13.0, NH), 7.13 (d, JHH¼9.1, 2H), 8.17 (d, JHH¼8.16, 2H); 13C
(s, Cmeta), 138.7 (d, Cipso); 31P NMR
d
62.94; 15N NMR
d
ꢁ290.06 (d).
NMR d 22.3 (d, C7,8), 41.3 (d,C5), 74.5 (d, C4,6), 118.2 (d, Cortho), 125.3
MS (m/z) 257 (Mþ), 224 (Mþꢁ33), 215 (Mþꢁ42), 189 (Mþꢁ68), 160
(Mþꢁ97), 140 (Mþꢁ117), 94 (Mþꢁ163), 93 (Mþꢁ164), 69
(Mþꢁ188), 41 (Mþꢁ216). Anal. Calcd for C11H16O2NSP: C, 51.35%; H,
6.27%. Found: C, 51.60%; H, 6.33%.
(s, Cmeta), 142.8 (s, Cpara), 144.9 (d, Cipso); 31P NMR 61.92; 15N NMR
d
d
ꢁ283.60 (d). MS (m/z) 302 (Mþ), 269 (Mþꢁ33), 234 (Mþꢁ68), 216
(Mþꢁ86), 185 (Mþꢁ117), 138 (Mþꢁ164), 108 (Mþꢁ194), 69
(Mþꢁ233), 41 (Mþꢁ261). Anal. Calcd for C11H15O4N2SP: C, 43.70%;
H, 5.00%. Found: C, 43.92%; H, 5.02%.
5.2.7. ax-2-p-Chloroanilino-2-thio-cis-4,6-dimethyl-1,3,2
phosphinane (cis-ax-4). Mp 245–246 ꢀC. Isolated yield 18.9%. 1H
l
5-dioxa-
Supplementary data
NMR d 1.43 (dd, 6H), 1.80 (dq, 1H), 1.92 (dt, 1H), 4.62 (m, 2H), 4.8 (d,
2JHP¼7.4, NH), 6.92 (d, 3JHH¼8.7, 2H), 7.17 (d, 3JHH¼8.7, 2H), 13C NMR
Supplementary data associated with this article can be found, in
d
22.4 (d, C7,8), 40.4 (d, C5), 76.2 (d, C4,6), 119.5 (d, Cortho), 129.4 (s,
Cmeta), 138.1 (s, Cipso); 31P NMR
d
59.43; 15N NMR
d
ꢁ293.67 (d). MS
(m/z) 291 (Mþ), 223 (Mþꢁ68), 205 (Mþꢁ86), 170 (Mþꢁ121), 158
(Mþꢁ133), 127 (Mþꢁ164), 99 (Mþꢁ192), 69 (Mþꢁ222), 41
(Mþꢁ250). Anal. Calcd for C11H15O2NSPCl: C, 45.29%; H, 5.18.
Found: C, 45.42%; H, 5.26%.
References and notes
1. (a) Eliel, E. L.; Wilen, S. H.; Mander, L. N. Stereochemistry of Organic Compounds;
Wiley: New York, NY, 1994, Chapter 11; (b) Kellie, G. M.; Ridell, F. G. Top. Ster-
eochem. 1974, 8, 225.
2. (a) Eliel, E. L.; Knoeber, M. C. J. Am. Chem. Soc. 1968, 90, 3444; (b) Ridell, F. G.;
Robinson, J. T. Tetrahedron 1967, 23, 3417; (c) Pihlaja, K. Acta Chem. Scand. 1948,
22, 716.
5.2.8. eq-2-p-Chloroanilino-2-thio-cis-4,6-dimethyl-1,3,2
phosphinane (cis-eq-4). Mp 97–99 ꢀC. Isolated yield 6.7%. 1H NMR
l
5-dioxa-
3. Excellent reviews about this topic can be found in: (a) Bentrude, W. G. In Steric
and Stereoelectronic Effects in 1,3,2-Dioxaphosphorinanes in Conformational Be-
havior of Six-Membered Rings: Analysis, Dynamics and Stereoelectronic Effects;
Juaristi, E., Ed.; VCH: New York, NY, 1995; (b) Maryanoff, B. E.; Hutchins, R. O.;
Maryanoff, C. A. Top. Stereochem. 1979, 11, 187; (c) Gorenstein, D. G. Chem. Rev.
1987, 87, 1049.
4. (a) Ref. 3a, and 3b and references cited there. (b) Bentrude, W. G.; Tan, H.-W. J.
Am. Chem. Soc. 1973, 95, 4666; (c) Van Nuffel, P.; Van Alsenoy, C.; Lenstra, A. T.
H.; Geise, H. J. J. Mol. Struct. 1984, 125, 1.
5. (a) Majoral, J. P.; Bergounhou, C.; Navech, J. Bull Soc. Chim. Fr. 1973, 3146; (b)
Brault, J.-F.; Majoral, J. P.; Savignac, P.; Navech, J. Bull Soc. Chim. Fr. 1973, 3149.
6. (a) Stewart, E. L.; Nevins, N.; Allinger, N. L.; Bowen, J. P. J. Org. Chem. 1999, 64,
5350; (b) Arshinova, R. P. Russ. Chem. Rev. 1984, 53, 351; (c) Cramer, C. J. J. Mol.
Struct. (THEOCHEM) 1996, 370, 135.
7. For a further discussion on orbital hyperconjugation see: (a) Thatcher, G. R. J.
The Anomeric Effect and Associated Stereoelectronic Effects; American Chemical
Society: Washington, DC, 1992; Vol. 539; (b) Juaristi, E.; Cuevas, G. Tetrahedron
1992, 48, 5019; (c) Kirby, A. J. The Anomeric Effect and Related Stereoelectronic
Effects at Oxygen; Springer: Heidelberg, Germany, 1983.
d
1.37 (dd, 6H), 1.67 (dt, 1H), 1.82 (dq, 1H), 4.87 (m, 2H), 5.44 (d,
3
3
2JHP¼13.4, NH), 7.0 (d, JHH¼8.8, 2H), 7.23 (d, JHH¼8.8, 2H); 13C
NMR
d 22.1 (d, C7,8), 41.1 (d, C5), 74.1 (d, C4,6), 121.0 (d, Cortho), 128.2
(s, Cpara), 129.0 (s, Cmeta), 137.5 (d, Cipso); 31P NMR 62.87; 15N NMR
d
d
ꢁ290.88 (d). MS (m/z) 291 (Mþ), 223 (Mþꢁ68), 205 (Mþꢁ86), 170
(Mþꢁ121), 158 (Mþꢁ133), 127 (Mþꢁ164), 99 (Mþꢁ192), 69
(Mþꢁ222), 41 (Mþꢁ250) Anal. Calcd for C11H15O2NSPCl: C, 45.29%;
H, 5.18. Found: C, 44.96%; H, 6.61%.
5.2.9. ax-2-p-Cyanoanilino-2-thio-cis-4,6-dimethyl-1,3,2
phosphinane (cis-ax-5). Mp 113–116 ꢀC. Isolated yield (22.4%). 1H
l
5-dioxa-
NMR
d 1.39 (dd, 6H), 1.81 (dq, 1H), 1.90 (dt, 1H), 4.62 (m, 2H), 5.85
(d, NH), 7.14 (d, 3JHH¼8.4, 2H), 7.54 (d, 3JHH¼8.4, 2H); 13C NMR
d 22.3
(d, C7,8), 40.4 (d, C5), 75.6 (d, C4,6), 105.6 (s, Cpara), 118.0 (d, Cortho),
118.9 (s, CN), 133.5 (s, Cmeta), 144.3 (s, Cipso); 31P NMR
d
57.35; 15N
8. Ref. 3a pp 277–278. (b) Verkade, J. G. Phosphorus Sulfur 1976, 2, 251.
9. Muiphy, P. C.; Tebby, J. C. dp–pp Bonding Effects on 31P NMR Chemical Shift of
N-Aryliminophosphoranes In Phosphorus Chemistry, Proceedings of the 1981
International Conference; Quin, L. D., Verkade, J. G., Eds.; ACS Symposium Series;
ACS: Washington, D.C., 1981; Vol. 171, p 573.
NMR
d
ꢁ285.80 (d). MS (m/z) 282 (Mþ), 255 (Mþꢁ27), 241
(Mþꢁ41), 214 (Mþꢁ68), 179 (Mþꢁ103), 149 (Mþꢁ133), 149
(Mþꢁ133), 118 (Mþꢁ164), 90 (Mþꢁ192), 69 (Mþꢁ213), 41
(Mþꢁ241). Anal. Calcd for C12H16O2N2SP: C, 51.06%; H, 5.36% N,
9.92%. Found: C, 50.53%; H, 5.31%, N, 9.90%.
10. Gilheany, D. G. Chem Rev. 1994, 94, 1339.
´
´
11. Dobado, J. A.; Martınez-Garcıa, H.; Molina-Molina, J.; Sundberg, M. R. J. Am.
Chem. Soc. 1998, 120, 8461.
12. Stec, W. J.; Okrusek, A. J. Chem. Soc. Perkin 1 1975, 1828.
13. Bentrude, W.; Setzer, W. N.; Newton, M.; Meehan, E. J.; Ramli, E.; Khan, M.;
5.2.10. eq-2-p-Cyanoanilino-2-thio-cis-4,6-dimethyl-1,3,2
phosphinane (cis-eq-5). Mp 174–175 ꢀC. Isolated yield (1.5%). 1H
l
5-dioxa-
Ealick, S. Phosphorus, Sulfur Silicon 1991, 57, 25.
14. (a) Domı´nguez, Z. J.; Cortez, M. T.; Gordillo, B. Tetrahedron 2001, 57, 9799; (b)
Hommer, H.; Domı´nguez, Z.; Gordillo, B. Acta Crystallogr. 1998, C54, 832.
15. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G.; Robb, M. A.; Cheeseman,
J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.;
Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Stain, M. C.; Farkas, O.;
Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo,
C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.;
Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.;
Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, A. M.; Peng, A. Y.;
Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnsons, B.;
Chen, W.; Wong, M. W.; Andress, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle,
E. S.; Pople, J. A. Gaussian 98; Gaussian,: Pittsburgh PA, 1998.
NMR
d 1.36 (dd, 6H), 1.75 (dt, 1H), 1.87 (dq, 1H), 4.89 (m, 2H), 6.29
(d, 2JHP¼13.4, NH), 7.12 (d, 3JHH¼8.6, 2H), 7.52 (d, 3JHH¼8.6, 2H); 13
C
NMR
d 22.5 (d, C7,8), 41.6 (d, C5), 74.9 (d, C4,6), 105.6 (s, Cpara), 119.1
(d, Cortho), 119.4 (s, CN), 133.8 (s, Cmeta), 143.6 (d, Cipso); 31P NMR
d
62.25; 15N NMR
d
ꢁ284.46 (d). MS (m/z) 282 (Mþ), 249 (Mþꢁ33),
214 (Mþꢁ68), 196 (Mþꢁ86), 165 (Mþꢁ117), 149 (Mþꢁ133), 118
(Mþꢁ164), 85 (Mþꢁ197), 69 (Mþꢁ213), 41 (Mþꢁ241). Anal. Calcd
for C12H15O2NSP: C, 51.06%; H, 5.35%. Found: C, 51.01%; H, 5.06%
5.2.11. ax-2-p-Nitroanilino-2-thio-cis-4,6-dimethyl-1,3,2
phosphinane (cis-ax-6). Mp 226–229 ꢀC. Isolated yield (6.5%). 1H
l
5-dioxa-
16. The cis/ trans diastereoselectivity observed for the phosphochloridites I, is due to
the selective decomposition of the trans- ax isomer by traces of humidity and the
hydrochloric acid evolved during the reaction [see discussion in Gordillo, B.;
NMR
d 1.43 (dd, 6H), 1.83 (dt, 1H), 1.93 (dq, 1H), 4.63 (m, 2H), 4.89
(m, NH), 7.14 (d, JHH¼9.1, 2H), 8.17 (d, JHH¼8.16, 2H); 13C NMR
3
3
´
Hernandez, J. Org. Prep. Proc. Intern. (OPPI) 1997, 29,195 Based on the amount of the
meso diol, the diastereomer I (cis- ax) is obtained in w 85% yield, when isolated.
17. (a) Stewart, E. L.; Nevins, N.; Allinger, N. L.; Bowen, J. P. J. Org. Chem. 1997, 62,
5198; (b) Leyssens, T.; Peeters, D. J. Org. Chem. 2008, 73, 2725.
18. Ref. 1, p. 716.
d
22.2 (d, C7,8), 40.4 (d, C5), 76.8 (d, C4,6), 117.3 (d, Cortho), 125.6 (s,
Cmeta), 142.4 (s, Cpara), 146.0 (s, Cipso); 31P NMR
d
57.24; 15N NMR
d
ꢁ283.79 (d). MS (m/z) 302 (Mþ), 272 (Mþꢁ30), 236 (Mþꢁ66), 234