C O M M U N I C A T I O N S
Scheme 3. Doubly Stereodifferentiating Aldol Reactions
(3) Akakura, M.; Boxer, M. B.; Yamamoto, H. ARKIVOC 2007, (x), 337.
(4) For reviews of 1,5-asymmetric induction in the aldol reaction, see: (a)
Yeung, K.; Paterson, I. Chem. ReV 2005, 105, 4237. (b) Dias, L. C.; Aguilar,
A. M. Chem. Soc. ReV. 2008, 37, 451.
(5) Selected papers utilizing 1,5-induction in the aldol reaction for total
synthesis: (a) Blanchette, M. A.; Malamas, M. S.; Nantz, M. H.; Roberts,
J. C.; Somfai, P.; Whritenour, D. C.; Masamune, S.; Kageyama, M.;
Tamura, T. J. Org. Chem. 1989, 54, 2817. (b) Claffey, M. M.; Heathcock,
C. H. J. Org. Chem. 1996, 61, 7646. (c) Paterson, I.; Oballa, R. M.;
Norcross, R. D. Tetrahedron Lett. 1996, 37, 8581. (d) Paterson, I.; Wallace,
D. J.; Gibson, K. R. Tetrahedron Lett. 1997, 38, 8911. (e) Evans, D. A.;
Trotter, B. W.; Coleman, P. J.; Coˆte´, B.; Dias, L. C.; Rajapakse, H. A.;
Tyler, A. N. Tetrahedron 1999, 55, 8671. (f) Evans, D. A.; Fitch, D. M.;
Smith, T. E.; Cee, V. J. J. Am. Chem. Soc. 2000, 122, 10033. (g) Paterson,
I.; Collett, L. A. Tetrahedron Lett. 2001, 42, 1187. (h) Kulkarni, B. A.;
Roth, G. P.; Lobkovsky, E.; Porco, J. A., Jr. J. Comb. Chem 2002, 4, 56.
(i) Paterson, I.; Coster, M. J. Tetrahedron Lett. 2002, 43, 3285. (j) Sinz,
C. J.; Rychnovsky, S. D. Tetrahedron 2002, 58, 6561. (k) Schneider, C.;
Tolksdorf, F.; Rehfeuter, M. Synlett 2002, 2098. (l) Paterson, I.; Di
Francesco, M. E.; Ku¨hn, T. Org. Lett. 2003, 5, 599. (m) Hubbs, J.;
Heathcock, C. H. J. Am. Chem. Soc. 2003, 125, 12836. (n) Zhang, D.-H.;
Zhou, W.-S. Synlett 2003, 1817. (o) Paterson, I.; Britton, R.; Ashton, K.;
Knust, H.; Stafford, J. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 11986. (p)
Keck, G. E.; McLaws, M. D. Tetrahedron Lett. 2005, 46, 4911. (q) Paterson,
I.; Coster, M. J.; Chen, D. Y.-K.; Oballa, R. M.; Wallace, D. J.; Norcross,
R. D. Org. Biomol. Chem. 2005, 3, 2399. (r) Paterson, I.; Coster, M. J.;
Chen, D. Y.-K.; Gibson, K. R.; Wallace, D. J. Org. Biomol. Chem. 2005,
3, 2410. (s) Paterson, I.; Anderson, E. A.; Dalby, S. M. Synthesis 2005,
3225. (t) Son, J. B.; Kim, S. N.; Kim, N. Y.; Lee, D. H. Org. Lett. 2006,
8, 611. (u) Park, P. K.; O’Malley, S. J.; Schmidt, D. R.; Leighton, J. M.
Finally, the doubly stereodifferentiating aldol reactions of these
enolates were examined, giving us a unique opportunity to study the
absolute stereocontrol of the 1,5- versus 1,2-inductions (Scheme 3).
The aldol reaction of the lithium enolate of 917 with aldehyde 1117 in
DMF gave 12 with high selectivity (Scheme 3A). However, the
reaction of the lithium enolate of 9 with ent-11 gave 13 with low
selectivity (Scheme 3B). On the other hand, the aldol reactions of 10
with 11 and ent-11 gave 12 and 13, respectively, both with high
selectivity (Scheme 3C,D). Thus, under acidic conditions, 1,2-induction
predominates in both cases, while metalloenolate conditions give 1,5-
induction in competition with the 1,2-process (Scheme 3B).
In summary, we have developed (1) 1,5-syn-selective aldol
reactions of lithium enolates of ꢀ-super siloxy methyl ketones and
aldehydes in DMF; (2) 1,5-anti-selective aldol reactions of the
trimethylsilyl enol ethers of methyl ketones with aldehydes
catalyzed by Tf2NH in toluene; (3) a stereoselective synthesis of
1,3,5-triols syn/syn- and anti/anti-7 from syn-5a; and (4) a stereo-
selective synthesis of 1,3,5-triol syn/anti-7 from anti-5a. These
methods are advantageous in 1,5-stereoinduction, which can be
achieved from the same starting material, and all of the 1,3,5-triol
stereoisomers can easily be prepared. Applications of this meth-
odology in the synthesis of long-chain complex polyketides (Scheme
1) are currently under investigation.
´
J. Am. Chem. Soc. 2006, 128, 2796. (v) Alvarez-Bercedo, P.; Falomir, E.;
Carda, M.; Marco, J. A. Tetrahedron 2006, 62, 9641. (w) Li, D.-R.; Zhang,
D.-H.; Sun, C.-Y.; Zhang, J.-W.; Yang, L.; Chen, J.; Liu, B.; Su, C.; Zhou,
W.-S.; Lin, G.-Q. Chem.sEur. J. 2006, 12, 1185. (x) Evans, D. A.;
Nagorny, P.; McRae, K. J.; Sonntag, L.-S.; Reynolds, D. J.; Vounatsos, F.
Angew. Chem., Int. Ed. 2007, 46, 545. (y) Mitton-Fry, M. J.; Cullen, A.;
Sammakia, T. Angew. Chem., Int. Ed. 2007, 46, 1066. (z) Paterson, I.;
Ashton, K.; Britton, R.; Cecere, G.; Chouraqui, G.; Florence, G. J.; Stafford,
J. Angew. Chem., Int. Ed. 2007, 46, 6167. (aa) Paterson, I.; Anderson, E. A.;
Dalby, S. M.; Lim, J. H.; Genovino, J.; Maltas, P.; Moessner, C. Angew.
Chem., Int. Ed. 2008, 47, 3016. (ab) Evans, D. A.; Burch, J. D.; Hu, E.;
Jaeschke, G. Tetrahedron 2008, 64, 4671. (ac) Paterson, I.; Mu¨hlthau, F. A.;
Cordier, C. J.; Housden, M. P.; Burton, P. M.; Loiseleur, O. Org. Lett.
2009, 11, 353. (ad) Evans, D. A.; Welch, D. S.; Speed, A. W. H.; Moniz,
G. A.; Reichelt, A.; Ho, S. J. Am. Chem. Soc. 2009, 131, 3840.
(6) (a) Paterson, I.; Gibson, K. R.; Oballa, R. M. Tetrahedron Lett. 1996, 37,
8585. (b) Evans, A. D.; Coleman, P. J.; Coˆte´, B. J. Org. Chem. 1997, 62,
788. (c) Evans, A. D.; Coˆte´, B.; Coleman, P. J.; Connell, B. T. J. Am.
Chem. Soc. 2003, 125, 10893. (d) Stocker, B. L.; Teesdale-Spittle, P.;
Hoberg, J. O. Eur. J. Org. Chem. 2004, 330.
(7) Computational studies: (a) Paton, R. S.; Goodman, J. M. Org. Lett. 2006,
8, 4299. (b) Paton, R. S.; Goodman, J. M. J. Org. Chem. 2008, 73, 1253.
(c) Dias, L. C.; Pinheiro, S. M.; de Oliveira, V. M.; Ferreira, M. A. B.;
Tormena, C. F.; Aguilar, A. M.; Zukerman-Schpector, J.; Tiekink, E. R. T.
Tetrahedron 2009, 65, 8714.
(8) (a) Denmark, S. E.; Fujimori, S. Synlett 2001, 1024. (b) Denmark, S. E.;
Fujimori, S. Org. Lett. 2002, 4, 3477. (c) Denmark, S. E.; Fujimori, S.;
Pham, S. M. J. Org. Chem. 2005, 70, 10823. (d) Dias, L. C.; de Marchi,
A. A.; Ferreira, M. A. B.; Aguilar, A. M. Org. Lett. 2007, 9, 4869. (e)
Dias, L. C.; de Marchi, A. A.; Ferreira, M. A. B.; Aguilar, A. M. J. Org.
Chem. 2008, 73, 6299.
(9) Tris(triethylsilyl)silane can easily be prepared from chlorotriethylsilane and
trichlorosilane. See: Bu¨rger, H.; Kilian, W. J. Organomet. Chem. 1971, 26, 47.
(10) (a) Li, Y.; Paddon-Row, M. N.; Houk, K. N. J. Org. Chem. 1990, 55, 481.
(b) Denmark, S. E.; Lee, W. Chem.sAsian J. 2008, 3, 327.
Acknowledgment. This work was supported by the Uehara
Memorial Foundation, the NIH (P50 GM086 145-01), and the
University of Chicago. We thank Antoni Jurkiewicz for his NMR
expertise.
(11) The use of the dicyclohexylboron enolate of substrate 1a with pivalaldehyde
gave a slightly lower anti selectivity (85:15).
(12) The reduction of anti-4a also gave a syn/anti product mixture in 89% yield
with high selectivity (91:9).
(13) Using the same procedure as reported to remove the Si(TMS)3 group. See:
(a) Brook, M. A.; Gottardo, C.; Balduzzi, S.; Mohamed, M. Tetrahedron
Lett. 1997, 38, 6997. (b) Brook, M. A.; Balduzzi, S.; Mohamed, M.;
Gottardo, C. Tetrahedron 1999, 55, 10027.
(14) Anwar, S.; Davis, A. P. Tetrahedron 1988, 44, 3761.
(15) The use of Me4NHB(OAc)3, SmI2/i-PrCHO, and DIBAL-H gave low yields
or low selectivities for anti/anti-8.
Supporting Information Available: Experimental procedures,
characterization of compounds 1a-d, 1a′-d′, 2a-d, syn-4a, anti-
1
4a-m, anti-5a, syn-5a-m, and 7-13, including their H NMR and
13C NMR spectra. This material is available free of charge via the
(16) The use of B(C6F5)3 as the Lewis acid instead of Sc(OTf)3 gave the 1,3,5-
syn/syn product as a single isomer. The relative configurations of products
5a, 7, and 8 were determined on the basis of the NMR spectra of these
related compounds (see the Supporting Information for full details).
(17) For the synthesis of aldehyde 11, see: Botuha, C.; Haddad, M.; Larcheveˆque,
M. Tetrahedron: Asymmetry 1998, 9, 1929. For the synthesis of ketone 9,
see ref 2b.
References
(1) For reviews of polyketides, see: (a) Rychnovsky, S. D. Chem. ReV. 199595,
2021. (b) Koskinen, A. M. P.; Karisalmi, K. Chem. Soc. ReV. 200534, 677.
(2) (a) Boxer, M. B.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 48. (b)
Boxer, M. B.; Yamamoto, H. J. Am. Chem. Soc. 2007, 129, 2762. (c) Boxer,
M. B.; Yamamoto, H. Org. Lett. 2008, 10, 453. (d) Boxer, M. B.; Akakura,
M.; Yamamoto, H. J. Am. Chem. Soc. 2008, 130, 1580. (e) Albert, B. J.;
Yamamoto, H. Angew. Chem., Int. Ed. 2010, 49, in press.
JA101076Q
9
5356 J. AM. CHEM. SOC. VOL. 132, NO. 15, 2010