V. G. Nenajdenko et al.
SHORT COMMUNICATION
was demonstrated to be an efficient protection/deprotection
protocol for this valuable functionality. The chemistry de-
scribed in this work opens access to “clickable” peptides
equipped with the azide “fastener”. We also demonstrated
that azidoisocyanides are effective for the divergent synthe-
sis of hybrid peptide molecules.
Supporting Information (see footnote on the first page of this arti-
cle): Full experimental details and copies of NMR spectra.
Acknowledgments
This work was financially supported by Russian Federal Agency of
Education, Grant P2063. We thank Dr. B. V. Lokshin for the op-
tical rotation measurements.
Scheme 5. Synthesis of “clickable” and triazolo-modified peptides.
Furthermore, this strategy is effective for the conjugation
of a peptide fragment with other biomolecules. As an
example, we synthesized cholesterol derivative 15, con-
sisting of peptide and cholesterol, connected by a triazole
linker, by cycloaddition of clickable peptide 12 to propargyl
cholesterol 14.[23] Binding of this peptide fragment to
cholesterol changed the properties of this extremely impor-
tant biomolecule dramatically, which can be useful for the
creation of new potent drugs (Scheme 6).[24]
[1] a) I. Ugi in Isonitrile Chemistry, Academic Press, New York
and London, 1971; b) I. A. O’Neil “Isocyanides and their Het-
eroanalogues (RZC)”; in Comprehensive Organic Functional
Group Transformations, 2003, Vol. 3, Part IV, 3.21, pp. 693–
726.
[2] a) A. Dömling, I. Ugi, Angew. Chem. Int. Ed. 2000, 39, 3168–
3270; b) J. Zhu, H. Bienamé (Eds.), Multicomponent Reactions,
Wiley-VCH, Weinheim, 2005; c) A. Dömling, Chem. Rev. 2006,
106, 17–89; d) J. Zhu, Eur. J. Org. Chem. 2003, 1133–1144; e)
L. El Kaim, L. Grimaud, Tetrahedron 2009, 65, 2153–2171; f)
I. Akritopoulou-Zanze, Curr. Opin. Chem. Biol. 2008, 12, 324–
331; g) C. Hulme, J. Dietrich, Mol. Divers. 2009, 13, 195–209;
h) L. A. Wessjohan, D. G. Rivera, O. E. Vercillo, Chem. Rev.
2009, 109, 796–814.
[3] a) I. Ugi, D. Marquarding, R. Urban, Chemistry and Biochem-
istry of Amino Acids, Peptides, and Proteins (Ed.: B. Weinstein),
Marcel Dekker, New York 1982, vol. 6, pp. 245–289; b) Ugi,
A. Dömling, B. Werner, “Synthesis of Peptides and Peptidomi-
metics” in Methods of Organic Chemistry (Houben-Weyl), Vol.
E22 (Ed.: M. Goodman), ch. 4 (Multicomponent Reactions),
2002, Thieme Verlag, Stuttgart.
[4] Recent examples of peptide and depsipeptide synthesis by
MCR: a) A. V. Gulevich, N. E. Shevchenko, E. S. Balenkova,
G.-V. Röschenthaler, V. G. Nenajdenko, Synlett 2009, 403–406;
b) M. Mroczkiewicz, R. Ostaszewski, Tetrahedron 2009, 65,
4025–4034; c) A. G. Zhdanko, A. V. Gulevich, V. G.
Nenajdenko, Tetrahedron 2009, 65, 4629–4702; d) A. V. Gulev-
ich, I. V. Shpilevaya, V. G. Nenajdenko, Eur. J. Org. Chem.
2009, 3801–3808; e) A. G. Zhdanko, A. V. Gulevich, V. G.
Nenajdenko, J. Org. Chem. 2009, 74, 884–887.
Scheme 6. Bioconjugation of peptide 12 and cholesterol.
“Clickable” peptides similar to 12 can be used for subse-
quent bioconjugation by using not only click chemistry but
also Staudinger ligation and other reactions. Further in-
vestigations into the synthesis and modifications of
“clickable” peptides will be published in due course.
[5] S. Bräse, G. Gil, K. Knepper, V. Zimmermann, Angew. Chem.
Int. Ed. 2005, 44, 5188–5240.
[6] a) H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int.
Ed. 2001, 40, 2004–2021; b) V. V. Rostovtsev, L. G. Green, V. V.
Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596–
2599; c) C. W. Tornøe, C. Christensen, M. Meldal, J. Org.
Chem. 2002, 67, 3057–3064; d) J. E. Moses, A. D. Moorhouse,
Chem. Soc. Rev. 2007, 36, 1249–1262.
[7] M. Meldal, C. W. Tornøe, Chem. Rev. 2008, 108, 2952–3015.
[8] See for example: a) A. Brik, J. Alexandratos, Y.-C. Lin, J. H.
Elder, A. J. Olson, ChemBioChem 2005, 6, 1167–1169; b) Ahs-
anullah, P. Schmieder, R. Kühne, J. Rademann, Angew. Chem.
Int. Ed. 2009, 48, 5042–5045.
Conclusions
In summary, we have suggested an efficient route to chi-
ral isocyanides containing the azide functionality. Ugi and
Passerini reactions of azidoisocyanide afford azide-contain-
ing derivatives of amino and hydroxy acids, which are suit-
able for the subsequent formation of corresponding triazole
derivatives in good yields. It was found that azidoisocy-
anides in protected form in CuI complexes can still undergo
Huisgen cycloaddition. Complexation of the isocyanide
group with CuCl followed by the treatment with Na2S2O3
[9] See for example: a) H. C. Kolb, K. B. Sharpless, Drug Discov-
ery Today 2003, 8, 1128–1137; b) N. G. Angelo, P. S. Arora, J.
Am. Chem. Soc. 2005, 127, 17134–17135.
[10] N. Miller, G. M. Williams, M. A. Brimble, Org. Lett. 2009, 11,
2409–2412.
[11] Q. Wan, J. Chen, G. Chen, S. J. Danishefsky, J. Org. Chem.
2006, 71, 8244–8249.
1448
www.eurjoc.org
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2010, 1445–1449