1850
T. Hirashita et al. / Tetrahedron Letters 51 (2010) 1847–1851
Table 2 (continued)
Entry
NuH
Alcohol
Products and yield
OMe
Ph
10
7c
1e
MeO
OMe
8ce: 66%
Ph
11
7c
8ce: 77%
OH
1e'
a
All reactions were performed with NuH 7 (1.2 mmol) and alcohol 1 (1.0 mmol) in ion exchanged water (15 mL) at 220 °C for 6 h.
b
4,40-Dimethoxydiphenylmethane (17%) was also obtained.
References and notes
Table 3
Intramolecular reaction of 9 under hydrothermal conditionsa
1. Sheldon, R. A.; Arends, I. W. C. E.; Hanefeld, U. Green Chemistry and Catalysis;
Wiley-VCH: Weinheim, 2007.
Ph
2. Bismuth: (a) Rueping, M.; Nachtsheim, B. J.; Kuenkel, A. Org. Lett. 2007, 9, 825–
828; (b) Rueping, M.; Nachtsheim, B. J.; Ieawsuwan, W. Adv. Synth. Catal. 2006,
348, 1033–1037.
3. Iron: (a) Jana, U.; Biswas, S.; Maiti, S. Tetrahedron Lett. 2007, 48, 4065–4069; (b)
Iovel, I.; Mertins, K.; Kischel, J.; Zapf, A.; Beller, M. Angew. Chem., Int. Ed. 2005,
44, 3913–3917; (c) Ji, W.-H.; Pan, Y.-M.; Zhao, S.-Y.; Zhan, Z.-P. Synlett 2008,
3046–3052.
Ph
OH
Δ
Ph
+
Ph
Ph
H2O
9
10
11
4. Indium: Yasuda, M.; Somyo, T.; Baba, A. Angew. Chem., Int. Ed. 2006, 45, 793–
796.
5. Rare earth metals: Noji, M.; Konno, Y.; Ishii, K. J. Org. Chem. 2007, 72, 5161–
5167.
6. (a) Sanz, R.; Martínez, A.; Miguel, D.; Álvarez-Gutiérrez, J. M.; Rodríguez, F. Adv.
Synth. Catal. 2006, 348, 1841–1845; (b) Miguel, R. D.; Álvarez-Gutiérrez, J. M.;
Rodríguez, F. Synlett 2008, 975–978.
7. Iodine: (a) Rao, W.; Tay, A. H. L.; Goh, P. J.; Choy, J. M. L.; Ke, J. K.; Chan, P. W. H.
Tetrahedron Lett. 2008, 49, 122–126; (b) Srihari, P.; Bhunia, D. C.; Sreedhar, P.;
Yadav, J. S. Synlett 2008, 1045–1049.
8. (a) Li, C. J.; Chan, T. H. Organic Reactions in Aqueous Media; Wiley: New York,
1997; (b)Organic Synthesis in Water; Grieco, P. A., Ed.; Springer: New York,
1997; (c)Lindström, U. M., Ed.Organic Reactions in Water: Principles, Strategies
and Applications; Blackwell: Oxford, 2007; (d) Li, C. J. Chem. Rev. 1993, 93,
2023–2035; (e) Lindström, U. M. Chem. Rev. 2002, 102, 2751–2772; (f) Li, C. J.
Chem. Rev. 2005, 105, 3095–3165.
Entry
Conditions
Yields (%)
11b
T (°C)
t (h)
10b
9 (recovery)
1
2
3
4
5
6
7
rfx
18
6
0
0
0
0
0
0
96
98
98
95
0
150
160
170
170
180
220
6
6
4
Trace
16
6
48
6
61
19
57
51
0
6
20
a
All reactions were performed with
(15 mL).
9
(1.0 mmol) in ion-exchanged water
b
NMR yields estimated from a mixture of 10 and 11.
9. Shirakawa, S.; Kobayashi, S. Org. Lett. 2007, 9, 311–314.
gave 8ca in a quantitative yield (entry 9). The regioisomeric alco-
hols 1e and 1e0 gave coinciding results (entries 10 and 11). p-Dime-
thoxybenzene was found to be inactive at 220 °C.
The aromatic compounds that can be applied in this alkylation
are limited to electron-rich aromatics, indicating that the transient
intermediates are not electrophilic and/or stable enough under the
conditions to promote the alkylation. We anticipated that an intra-
molecular reaction would open the possibility of using non-acti-
10. (a)van Eldik, R., Klärner, F.-G., Eds.High Pressure Chemistry: Synthetic,
Mechanistic, and Supercritical Applications; Wiley-VCH: Weinheim, 2002;
(b) Savage, P. E. Chem. Rev. 1999, 99, 603–621; (c) Katritzky, A. R.; Nichols, D.
A.; Siskin, M.; Murugan, R.; Balasubramanian, M. Chem. Rev. 2001, 101, 837–
892; (d) Akiya, N.; Savage, P. E. Chem. Rev. 2002, 102, 2725–2750; (e)
Watanabe, M.; Sato, T.; Inomata, H.; Smith, R. L., Jr.; Arai, K.; Kruse, A.;
Dinjus, E. Chem. Rev. 2004, 104, 5803–5821; (f) Comisar, C. M.; Savage, P. E.
Green Chem. 2005, 7, 800–806; (g) Savage, P. E. J. Supercrit. Fluids 2009, 47, 407–
414.
11. Miller, D. J.; Hawthorne, S. B. J. Chem. Eng. Data 2000, 45, 78–81.
12. (a) Sako, T.; Sugeta, T.; Otake, K.; Sato, M.; Tsugumi, M.; Hiaki, T.; Hongo, M. J.
Chem. Eng. Jpn. 1997, 30, 744–747; (b) Hatakeda, K.; Ikushima, Y.; Ito, S.; Saito,
N.; Sato, O. Chem. Lett. 1997, 245–246; (c) Sako, T.; Sugeta, T.; Otake, K.;
Kamizawa, C.; Okano, M.; Negishi, A.; Tsurumi, C. J. Chem. Eng. Jpn. 1999, 32,
830–832.
vated aromatic units as
a substrate. Thus, alcohol 9 was
subjected to the hydrothermal reaction with altering temperature
and the results are compiled in Table 3. The reactions under reflux-
ing and the thermal reactions below 170 °C, 9 remained intact (en-
tries 1–3). A small amount of cyclization product 10 was obtained
at 170 °C for 6 h and prolonging the time allowed to consume 9
affording 10 in 61% yield along with a dehydrated product 11 (en-
tries 4 and 5). Reactions at higher temperature gave better yields in
a shorter time (entries 6 and 7). The above results show that a non-
activated aromatic has a potential for the hydrothermal alkylation
and the cationic intermediate was practically generated from ben-
zylic alcohols even at 170 °C.
13. Abdelmoez, W.; Nakahasi, T.; Yoshida, H. Ind. Eng. Chem. Res. 2007, 46, 5286–
5294.
14. Recent examples of synthetic reactions in water: (a) Mehta, B. K.; Kumamoto,
K.; Yanagisawa, K.; Kotsuki, K. Tetrahedron Lett. 2005, 46, 6953–6956; (b)
Habib, P. M.; Kavala, V.; Kuo, C.-W.; Yao, C.-F. Tetrahedron Lett. 2008, 49, 7005–
7007; (c) Wang, Z.; Cui, Y-T.; Xu, Z-B.; Qu, J. J. Org. Chem. 2008, 73, 2270–2274;
(d) Liu, Y.-L.; Liu, L.; Wang, Y.-L.; Han, Y.-C.; Wang, D.; Chen, Y.-J. Green Chem.
2008, 10, 635–640; (e) Ghosh, S.; Dey, R.; Chattopadhyay, K.; Ranu, B. C.
Tetrahedron Lett. 2009, 50, 4892–4895; (f) Ko, K.; Nakano, K.; Watanabe, S.;
Ichikawa, Y.; Kotsuki, H. Tetrahedron Lett. 2009, 50, 4025–4029.
15. (a) Yamasaki, Y.; Enomoto, H.; Yamasaki, N.; Nakahara, M. Bull. Chem. Soc. Jpn.
2000, 73, 2687–2693; (b) Yamasaki, Y.; Hirayama, T.; Oshima, K.; Matsubara, S.
Chem. Lett 2004, 864–865.
In summary, the direct coupling of alcohols and aromatic com-
pounds in high-temperature water has been achieved. Water un-
der hydrothermal conditions would open opportunities for
alcohols as an alkylating agent without added chemicals.21
16. (a) Chamakh, A.; Amri, H. Tetrahedron Lett. 1998, 39, 375–378; (b) Im, Y. J.; Lee,
C. G.; Kim, H. R.; Kim, J. N. Tetrahedron Lett. 2003, 44, 2987–2990; (c) Katritzky,
A. R.; Wang, Z.; Wang, M.; Wilkkerson, C. R.; Hall, C. D.; Akhmedov, N. G. J. Org.
Chem. 2004, 69, 6617–6622.
Acknowledgment
17. The cleavage of 1,3-diketone under aquathermolysis conditions (15% sodium
formate, 315 °C) was proposed to explain
a formation of decomposition
products. Siskin, M.; Brons, G.; Vaughn, S. N.; Katritzky, A. R.; Balasubramanian,
M.; Greenhill, J. V. Energy Fuels 1993, 7, 589–597.
We thank Professor Y. Yamasaki (Hosei University) for intro-
ducing us the autoclave and helpful discussion.