Journal of the American Chemical Society
Article
Toganoh, M.; Rodríguez, J. R.; Do, B.; Neiwert, W. A.; Hardcastle, K.
I. J. Org. Chem. 2002, 67, 2515. (c) Bravo, F.; McDonald, F. E.;
Neiwert, W. A.; Hardcastle, K. I. Org. Lett. 2004, 6, 4487. (d) Valentine,
J. C.; McDonald, F. E.; Neiwert, W. A.; Hardcastle, K. I. J. Am. Chem.
Soc. 2005, 127, 4586. (e) McDonald, F. E.; Tong, R.; Valentine, J. C.;
Bravo, F. Pure Appl. Chem. 2007, 79, 281.
containing natural products is an active area of research, as is
investigation of other Rh(I) catalysts and alkene directing
groups.
ASSOCIATED CONTENT
* Supporting Information
■
S
(12) Distal is defined as the epoxide furthest from the terminating
alcohol nucleophile.
Experimental procedures and characterization data for all new
compounds. The Supporting Information is available free of
(13) Tsuji, J.; Kataoka, H.; Kobayashi, Y. Tetrahedron Lett. 1981, 22,
2575. (b) Trost, B. M.; Molander, G. A. J. Am. Chem. Soc. 1981, 103,
5969. (c) Trost, B. M.; Tenaglia, A. Tetrahedron Lett. 1988, 29, 2931.
(d) Trost, B. M.; McEachern, E. J.; Toste, F. D. J. Am. Chem. Soc.
1998, 120, 12702. (e) Trost, B. M.; McEachern, E. J. J. Am. Chem. Soc.
1999, 121, 8649. (f) Hirai, A.; Yu, X.-Q.; Tonooka, T.; Miyashita, M.
Chem. Commun. (Cambridge, U.K.) 2003, 2482. (g) Yu, X.-Q.;
Yoshimura, F.; Ito, F.; Sasaki, M.; Hirai, A.; Tanino, K.; Miyashita, M.
Angew. Chem., Int. Ed. 2008, 47, 750. (h) Arthuis, M.; Beaud, R.;
Gandon, V.; Roulland, E. Angew. Chem., Int. Ed. 2012, 51, 10510.
(14) (a) Ashworth, R. W.; Berchtold, G. A. Tetrahedron Lett. 1977,
18, 343. (b) Fagnou, K.; Lautens, M. Org. Lett. 2000, 2, 2319.
(15) (a) Ha, J. D.; Shin, E. Y.; Kang, S. K.; Ahn, J. H.; Choi, J.-K.
Tetrahedron Lett. 2004, 45, 4193. (b) Inoue, M.; Saito, F.; Iwatsu, M.;
Ishihara, Y.; Hirama, M. Tetrahedron Lett. 2007, 48, 2171.
(16) (a) Satake, M.; Campbell, A.; Van Wagoner, R. M.; Bourdelais,
A. J.; Jacocks, H.; Baden, D. G.; Wright, J. L. C. J. Org. Chem. 2009, 74,
989. (b) Van Wagoner, R. M.; Satake, M.; Bourdelais, A. J.; Baden, D.
G.; Wright, J. L. C. J. Nat. Prod. 2010, 73, 1177.
(17) (a) Kuranaga, T.; Ohtani, N.; Tsutsumi, R.; Baden, D. G.;
Wright, J. L. C.; Satake, M.; Tachibana, K. Org. Lett. 2011, 13, 696.
For a discussion of fragment synthesis, see: (b) Kuranaga, T.; Satake,
M.; Baden, D. G.; Wright, J. L. C; Tachibana, K. Tetrahedron Lett.
2010, 51, 4673. (c) Ohtani, N.; Tsutsumi, R.; Kuranaga, T.; Shirai, T.;
Wright, J. L.; Baden, D. G.; Satake, M.; Tachibana, K. Heterocycles
2010, 80, 825.
(18) “π-Activating group” refers to the group distal to the furthest
epoxide relative to the trapping nucleophile.
(19) See the Supporting Information for complete details of synthetic
procedures and compound characterization towards epoxy alcohols
6a−6f.
AUTHOR INFORMATION
Corresponding Author
■
Present Address
†Amgen, 360 Binney Street, Cambridge, MA 02142.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the NIGMS (GM72566 and fellowship to M.G.B.,
F32GM095014) and the NSF (Graduate Research Fellowship
to K.W.A.) for financial support of this work. The content is
solely the responsibility of the authors and does not necessarily
represent the official views of the National Institutes of Health.
We also thank Li Li and Eric A. Standley (both MIT) for
HRMS analyses, which were conducted on an instrument
purchased with the assistance of NSF Grant CHE-0234877.
NMR spectroscopy was carried out on instruments purchased
in part with funds provided by the NSF (CHE-9808061 and
CHE-8915028). We are grateful to Elizabeth H. Kelley and Eric
A. Standley (both MIT) for insightful discussions and input
during the preparation of this manuscript.
REFERENCES
■
(20) Alkenes other than enoates are superior π-activating groups for
endo-selective epoxy-alcohol cyclizations promoted by Brønsted acids.
See: (a) Nicolaou, K. C.; Prasad, C. V. C.; Somers, P. K.; Hwang, C.-K.
J. Am. Chem. Soc. 1989, 111, 5330. (b) Nicolaou, K. C.; Prasad, C. V.
C.; Somers, P. K.; Hwang, C.-K. J. Am. Chem. Soc. 1989, 111, 5335.
(21) Enoate 9 was prepared in three steps from commercially
available 2-deoxy-D-ribose. See: Nicolaou, K. C.; Wallace, P. A.; Shi, S.;
Ouellette, M. A.; Bunnage, M. E.; Gunzner, J. L.; Agrios, K. A.; Shi, G.;
Gartner, P.; Yang, Z. Chem.Eur. J. 1999, 5, 618.
(1) (a) Nakata, T. Chem. Rev. 2005, 105, 4314. (b) Inoue, M. Chem.
Rev. 2005, 105, 4379. (c) Nicolaou, K. C.; Frederick, M. O.; Aversa, R.
J. Angew. Chem., Int. Ed. 2008, 47, 7182.
(2) (a) Nakanishi, K. Toxicon 1985, 23, 473. (b) Nicolaou, K. C.
Angew. Chem., Int. Ed. Engl. 1996, 35, 588.
(3) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734.
(4) Vilotijevic, I.; Jamison, T. F. Angew. Chem., Int. Ed. 2009, 48,
5250.
(5) (a) Vilotijevic, I.; Jamison, T. F. Science 2007, 317, 1189. (b) Van
Dyke, A. R.; Jamison, T. F. Angew. Chem., Int. Ed. 2009, 48, 4430.
(c) Morten, C. J.; Jamison, T. F. J. Am. Chem. Soc. 2009, 131, 6678.
(d) Morten, C. J.; Byers, J. A.; Van Dyke, A. R.; Vilotijevic, I.; Jamison,
T. F. Chem. Soc. Rev. 2009, 38, 3175.
(6) (a) Abe, I.; Rohmer, M.; Prestwich, G. D. Chem. Rev. 1993, 93,
2189. (b) Van Tamelen, E. E. Acc. Chem. Res. 1975, 8, 152.
(c) Johnson, W. S.; Gravestock, M. B.; McCarry, B. E. J. Am. Chem.
Soc. 1971, 93, 4332. (d) Gravestock, M. B.; Johnson, W. S.; McCarry,
B. E.; Parry, R. J.; Ratcliffe, B. E. J. Am. Chem. Soc. 1978, 100, 4274.
(e) Corey, E. J.; Luo, G.; Lin, L. S. J. Am. Chem. Soc. 1997, 119, 9927.
(7) For a recent review on vinyl epoxides in organic synthesis, see:
He, J.; Ling, J.; Chiu, P. Chem. Rev. 2014, 114, 8037.
(8) Zakarian, A.; Batch, A.; Holton, R. A. J. Am. Chem. Soc. 2003, 125,
7822.
(22) Wei, X.; Lorenz, J. C.; Kapadia, S.; Saha, A.; Haddad, N.;
Busacca, C. A.; Senanayake, C. H. J. Org. Chem. 2007, 72, 4250.
(23) The phosphonate ester was prepared in two steps by the
literature method: Mitton-Fry, M. J.; Cullen, A. J.; Sammakia, T.
Angew. Chem., Int. Ed. 2007, 46, 1066.
(24) Zhu, Y.; Wang, Q.; Cornwall, R. G.; Shi, Y. Chem. Rev. 2014,
114, 8199.
(25) Diepoxide 13 was synthesized from aldehyde 10 via a related
sequence in seven steps. See the Supporting Information for details.
(26) Yang, D.; Xu, M. Org. Lett. 2001, 3, 1785.
(27) (a) Netscher, T. J. Organomet. Chem. 2006, 691, 5155.
(b) Wang, Z. J.; Jackson, W. R.; Robinson, A. J. Org. Lett. 2013, 15,
3006.
(28) Chatterjee, A. K.; Sanders, D. P.; Grubbs, R. H. Org. Lett. 2002,
4, 1939.
(9) Wan, S.; Gunaydin, H.; Houk, K. N.; Floreancig, P. E. J. Am.
(29) (a) Barton, D. H. R.; Kitchin, J. P.; Lester, D. J.; Motherwell, W.
B.; Papoula, M. T. B. Tetrahedron 1981, 37, 73. (b) Anaya, J.; Barton,
D. H. R.; Gero, S. D.; Grande, M.; Martin, N.; Tachdijian, C. Angew.
Chem., Int. Ed. Engl. 1993, 32, 867. (c) See the Supporting
Information for a discussion regarding the optimization of this
oxidative cleavage sequence.
Chem. Soc. 2007, 129, 7915.
(10) (a) Tanuwidjaja, J.; Ng, S.-S.; Jamison, T. F. J. Am. Chem. Soc.
2009, 131, 12084. (b) Underwood, B. S.; Tanuwidjaja, J.; Ng, S.-S.;
Jamison, T. F. Tetrahedron 2013, 69, 5205.
(11) (a) McDonald, F. E.; Wang, X.; Do, B.; Hardcastle, K. I. Org.
Lett. 2000, 2, 2917. (b) McDonald, F. E.; Bravo, F.; Wang, X.; Wei, X.;
6945
J. Am. Chem. Soc. 2015, 137, 6941−6946