This work was supported by the Academic Research Fund
Tier 1 (RG 47/08) (C.-W. S.), (RG 28/07) (K. H. L.) and by a
Strategic Research Grant from City University of Hong Kong
(Project No. 7002285) (K.-C. L.).
Fig. 3 The charge distributions on the ligand backbone A.
Notes and references
energy: 6.65 kcal molꢀ1), while another lone pair of electrons
donates strongly to the vacant p-rich hybrids (sp23.23 (95.9%
p-character), occupancy: 0.22) of the Sn(1) atom (second order
perturbation stabilizing energy: 80.05 kcal molꢀ1). One lone
pair of electrons on the S(1) atom delocalize to the p* orbital
of the Sn(1)–C(1) bond (second-order perturbation stabilizing
energy: 42.07 kcal molꢀ1).
1 (a) A. G. Brook and M. A. Brook, Adv. Organomet. Chem., 1996,
39, 71; (b) J. Escudie, C. Couret and H. Ranaivonjatovo, Coord.
´
Chem. Rev., 1998, 178–180, 565; (c) K. M. Baines and
W. G. Stibbs, Adv. Organomet. Chem., 1996, 39, 275;
´ ´
(d) J. Barrau, J. Escudie and J. Satge, Chem. Rev., 1990, 90, 283.
2 A. G. Brook, S. C. Nyburg, F. Abdesaken, B. Gutekunst,
G. Gutekunst, R. Krishna, M. R. Kallury, Y. C. Poon,
Y.-M. Chang and W. Wong-Ng, J. Am. Chem. Soc., 1982, 104, 5667.
3 (a) H. Meyer, G. Baum, W. Massa and A. Berndt, Angew. Chem.,
Int. Ed. Engl., 1987, 26, 798; (b) M. Lazraq, J. Escudie
J. Satge, M. Drager and R. Dammel, Angew. Chem., Int. Ed. Engl.,
1988, 27, 828.
´
, C. Couret,
The topological analysis of the electron densities of com-
pound 3 according to Bader’s quantum theory of atoms in
molecules (QTAIM) was performed.23 Compound 3 is optimized
at the B3LYP17 level with the cc-pVTZ-PP basis set24 for Sn
and the 6-31G(d) basis set for other atoms. The Laplacian of
´
¨
4 See ESIw for complete citation.
5 W.-P. Leung, Z.-X. Wang, H.-W. Li and T. C. W. Mak, Angew.
Chem., Int. Ed., 2001, 40, 2501.
6 (a) W.-P. Leung, C.-W. So, J.-Z. Wang and T. C. W. Mak, Chem.
Commun., 2003, 248; (b) W.-P. Leung, C.-W. So, K.-W. Kan,
H.-S. Chan and T. C. W. Mak, Inorg. Chem., 2005, 44, 7286;
(c) W.-P. Leung, C.-W. So, K.-W. Kan, H.-S. Chan and T. C.
W. Mak, Organometallics, 2005, 24, 5033.
7 J.-H. Chen, J. Guo, Y. Li and C.-W. So, Organometallics, 2009, 28,
4617.
8 See ESIw for the complete experimental procedures and spectro-
scopic data of 2 and 3.
2
electron density r r and the total energy density H at the
(3,ꢀ1) bond critical point (BCP) show that the Sn–C bonds in
3, [:Sn(CH3)H] and [:SnQCH2] are polar and covalent
(Table 1). The bond nature of the Sn–C bond in 3 is in
between that of the :Sn–C bond in [:Sn(CH3)H] and that of
the :SnQC bond in [:SnQCH2]. As there may be substantive
p-electron delocalization along the Sn–C bond in compound 3,
it is unsurprising to find that the Sn–C bonds in compound 3
may have little double bond character compared with the :SnQC
bond in [:SnQCH2].
9 W.-P. Leung, Q. W.-Y. Ip, S.-Y. Wong and T. C. W. Mak,
Organometallics, 2003, 22, 4604.
10 Crystal data for 2, [C36H53N2O0.5P2SSi3Sn], M = 818.76, mono-
clinic, space group P21, a = 9.2762(3), b = 40.3235(12), c =
11.5632(3) A, b = 110.8640(10)1, V = 4041.6(2) A3, Z = 4, T =
103(2) K, m = 0.880 mmꢀ1, 46 207 measured reflections, 17 778
independent reflections [R(int) = 0.0429], 841 refined parameters,
R1 = 0.0367, wR2 = 0.0683 (I 4 2s(I)), Flack parameter
In conclusion, the first example of a tin(II) bis(phosphinoyl)-
methanediide compound 3, has been synthesized successfully
by the reaction of 1 with two equivalents of [Sn{N(SiMe3)2}2]
in refluxing toluene. It is suggested that the reaction proceeded
through the intermediate compound 2, which was further
dehydroaminated by [Sn{N(SiMe3)2}2] to form 3. X-Ray
crystallography shows that the Sn–C bond in compound 3
has some double character. DFT calculations show that the
Sn–C bond in 3 has a 4CQSn: skeleton which is stabilized by
the lone pair of electrons on the nitrogen and sulfur donors.
Topological analysis of the electron densities shows that the
Sn–C bond in 3 is polar and covalent and its bond nature is
between a single and double bond.
0.463(12). Crystal data for 3, [C56H58N2P4S2Si2Sn2],
M =
1240.60, monoclinic, space group P21/n, a = 10.6210(2), b =
12.6848(3), c = 20.9770(5) A, b = 101.344(1)1, V = 2770.9(1) A3,
Z = 2; T = 143(2) K, m = 1.174 mmꢀ1, 116 621 measured
reflections, 23 274 independent reflections [R(int) = 0.0343], 310
refined parameters, R1 = 0.0268, wR2 = 0.0667 (I 4 2s(I)).
11 W.-P. Leung, C.-W. So, Y.-S. Wu, H.-W. Li and T. C. W. Mak,
Eur. J. Inorg. Chem., 2005, 513.
12 L. M. Engelhardt, B. S. Jolly, M. F. Lappert, C. L. Raston
and A. H. White, J. Chem. Soc., Chem. Commun., 1988, 336.
13 T. Fjeldberg, H. Hope, M. F. Lappert, P. P. Power and
A. J. Thorne, J. Chem. Soc., Chem. Commun., 1983, 639.
14 P. B. Hitchcock, M. F. Lappert, B. J. Samways and
E. L. Weinberg, J. Chem. Soc., Chem. Commun., 1983, 1492.
15 M. Weidenbruch, U. Grobecker and W. Saak, Organometallics,
1998, 17, 5206.
16 (a) D. Feller, J. Chem. Phys., 1990, 93, 579; (b) P. Hohenberg and
W. Kohn, Phys. Rev., 1964, 136, B864.
17 (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648; (b) C. Lee,
W. Yang and R. G. Parr, Phys. Rev. B: Condens. Matter, 1988,
37, 785.
18 M. J. Frisch et al., GAUSSIAN 03, Revision B.05, Gaussian, Inc.,
Pittsburgh PA, 2003 (see ESIw for complete citation).
19 See ESIw for complete citation.
20 F. Weinhold and C. R. Landis, in Valency and Bonding: A Natural
Bond Orbital Donor–Acceptor Perspective, Cambridge University
Press, Cambridge, UK, 2005, vol. 3, pp. 215–275.
Table
1 Theoretical topological features at the BCP of 3,
[:SnH(CH3)] and [:SnQCH2]a
2
Bond
r
r r
G
H
|V|
3
Sn(1)–C(1)
C(1)–P(1)
P(1)–N(1)
C(1)–P(2A)
P(2)–S(1)
Sn(1)–N(1)
Sn(1)–S(1)
0.57
1.22
1.23
1.24
0.97
0.44
0.30
3.24
0.42
1.36
2.02
1.43
0.25
0.39
0.15
ꢀ0.20
ꢀ1.21
ꢀ0.98
ꢀ1.20
ꢀ0.64
ꢀ0.08
ꢀ0.06
0.62
2.57
3.00
2.63
0.89
0.47
0.21
2.22
14.88
3.25
ꢀ5.58
4.50
1.36
21 (a) E. D. Glendening and F. Weinhold, J. Comput. Chem., 1998,
19, 593; (b) E. D. Glendening and F. Weinhold, J. Comput. Chem.,
1998, 19, 610; (c) E. D. Glendening, J. K. Badenhoop and
F. Weinhold, J. Comput. Chem., 1998, 19, 628.
[:SnH(CH3)]
Sn–C
0.64
2.85
0.44
ꢀ0.24
0.67
1.28
[:SnQCH2]
Sn–C
22 K. B. Wiberg, Tetrahedron, 1968, 24, 1083.
0.87
6.52
0.87
ꢀ0.41
23 R. F. W. Bader, in Atoms in Molecules—A Quantum Theory,
Oxford University Press, New York, 1990.
24 K. A. Peterson, J. Chem. Phys., 2003, 119, 11099.
a
2
Units: r (e Aꢀ3); r r (e Aꢀ5); H, G, |V| (hartree Aꢀ3).
ꢁc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 1929–1931 | 1931