542
S. R. Crosby et al.
LETTER
(3) Krapcho, J.; Turk, C.; Cushman, D. W.; Powell, J. R.;
LDHs; we found that this genetically engineered oxi-
doreductase has great potential value in synthesis due to
its broad substrate specificity and high catalytic activity.11
Hence, the lipase, LB-hicDH mutant catalysed hydrolysis
reduction of the series of 5-nitro-2-oxo esters was exam-
ined. Interestingly, when substrates bearing methyl, ethyl
or propyl side-chains (5, 19 and 20) were used, there was
no kinetic resolution and a 1:1 mixture of D-hydroxy es-
ters was isolated in good yields (Scheme 6). However,
with the 4-phenyl derivative 21, a 2.5:1 mixture of diaste-
reomers 32 and 33 was obtained. These results illustrate
the broad substrate specificity of the LB-hicDH mutant
and its potential value in organic synthesis.
DeForrest, J. M.; Spitzmiller, E. R.; Karanewsky, D.;
Duggan, M.; Rovnyak, G. J. Med. Chem. 1988, 31, 1148.
(4) See for example: (a) Murphy, A. C.; Mitova, M. I.; Blunt,
J. W.; Munro, M. H. G. J. Nat. Prod. 2008, 71, 806.
(b) Thottahill, J. F.; Moniot, J. L.; Mueller, R. H.; Wong,
M. K. Y.; Kissick, T. P. J. Org. Chem. 1986, 51, 3140.
(c) Moody, C. M.; Young, D. W. Tetrahedron Lett. 1994, 35,
7277. (d) Del Valle, J. R.; Goodman, M. J. Org. Chem.
2003, 68, 3923. (e) Heindl, C.; Hübner, H.; Gmeiner, P.
Tetrahedron: Asymmetry 2003, 14, 3153.
(5) Crosby, S. R.; Hateley, M. J.; Willis, C. L. Tetrahedron Lett.
2000, 41, 397.
(6) Shaked, Z.; Whitesides, G. M. J. Am. Chem. Soc. 1980, 102,
7104.
(7) Dalby, J. S.; Kenner, G. W.; Sheppard, R. C. J. Chem. Soc.
1962, 4387.
In conclusion, we have shown that (2R,4R)-4-methylpro-
line (11) and (3S,5R)-3-hydroxy-5-methylpiperidinone
(12) can be prepared in good yield from methyl (2S,4R)-4-
methyl-5-nitro-2-hydroxypentanoate (8). A chemoenzy-
matic synthesis of a series of 2-hydroxy-5-nitro-4-substi-
tuted esters is described that uses two biotransformations
in a single-pot process in which a kinetic resolution/reduc-
tion occurs. Molecular modelling has provided an insight
into the unusual transformation occurring in the active site
of BS-LDH. Whilst the kinetic resolution/reduction has
synthetic potential, it is more efficient to prepare single
enantiomers of the 5-nitro-2-oxo esters as substrates for
the biotransformations. The C-4 stereogenic centre of the
targets may be generated in excellent yield and stereocon-
trol through addition of acylated camphorsultams to ni-
troalkenes (Scheme 7).14
(8) Piperidinone 12: white solid; mp 149 °C (MeOH); [a]D
+10.6 (c 0.5, MeOH); IR (Nujol): 3336, 2929, 1755, 1290
cm–1; 1H NMR (300 MHz, D2O): d = 1.03 (d, J = 6.5 Hz, 3 H,
5-CH3), 1.53 (q, J = 12.6 Hz, 1 H, 4-Hax), 2.12–2.20 (m, 3 H,
OH, 5-H and 4-Heq), 3.22 (dd, J = 11.0, 8.5 Hz, 1 H, 6-HH),
3.31 (ddd, J = 11.0, 5.6, 2.0 Hz, 1 H, 6-HH), 4.26 (dd, J =
12.6, 5.9 Hz, 1 H, 3-H); 13C NMR (75 MHz, CD3OD): d =
19.1, 28.8, 39.2, 50.0, 68.5 (C-3), 175.6 (C-2); MS (CI): m/z
[MH]+ calcd for C9H12NO2: 130.0865; found: 130.0868.
Tosylate 10: yellow oil; [a]D –19.5 (c 1.0, CHCl3); IR (film):
2959, 1763, 1598, 1555, 1438, 1376 cm–1; 1H NMR (300
MHz, CDCl3): d = 1.05 (d, J = 7.0 Hz, 3 H, 4-CH3), 1.89–
1.96 (m, 2 H, 3-H2), 2.38 (s, 3 H, CH3), 3.66 (s, 3 H, OCH3),
4.26 (dd, J = 12.2, 7.3 Hz, 1 H, 4-HH), 4.33 (dd, J = 12.2, 7.3
Hz, 1 H, 4-HH), 4.96 (dd, J = 7.3, 6.0 Hz, 1 H, 2-H), 7.36 (d,
J = 8.0 Hz, 2 H, ArH), 7.83 (d, J = 8.0 Hz, 2 H, ArH); 13
C
NMR (75 MHz, CDCl3): d = 17.5, 21.6, 28.8, 35.5, 52.7,
74.9, 79.5, 128.0, 128.9, 129.8, 145.5, 168.5; MS (CI): m/z
[MH]+ calcd for C14H20NO7S: 346.0960; found: 346.0964.
(9) The crystal structure coordinates of a ternary complex of BS-
LDH containing NADH and the substrate analogue oxamate,
were taken from the protein data bank (1LDN). Oxamate
was replaced in the structure by the (4R)-2-keto acid (R)-5
and the conformation of the rest of the molecule was
adjusted to best dock in the remaining space in the active
site. This process was repeated for the S-enantiomer [(S)-5]
of the substrate. Both complexes were soaked in a 5Å layer
of water and energy-minimised using DISCOVER v 2.95
and the cvff force field in SGI challenge L.
NO2
O
O
NO
2, TiCl4
i,
R
N
R
N
ii, 20% NH4F (aq)
S
S
O2
O2
R = Me, 85%
R = i-Pr, 80%
R = Ph, 73%
Scheme 7
(10) Wassermann, H. H.; Ho, W.-B. J. Org. Chem. 1994, 59,
4364.
Acknowledgment
(11) For a general procedure for conducting the biotransforma-
tions, see: Sutherland, A.; Willis, C. L. J. Org. Chem. 1998,
63, 7764.
We are grateful to the EPSRC for funding (S.R.C.) and Ms Rebecca
Ward for the preparation of 2-keto ester 19.
(12) Alvarez, J. A.; Gelpi, J. L.; Johnsen, K.; Bernard, N.;
Delcour, J.; Clarke, A. R.; Holbrook, J. J.; Cortés, A. Eur. J.
Biochem. 1997, 244, 203.
(13) Bernard, N.; Johnsen, K.; Gelpi, J. L.; Alvarez, J. A.; Ferain,
T.; Garmyn, D.; Hols, P.; Cortés, A.; Clarke, A. R.;
Holbrook, J. J.; Delcour, J. Eur. J. Biochem. 1997, 244, 213.
(14) Clare, J. E.; Willis, C. L.; Yuen, J.; Lawrie, K. W. M.;
Charmant, J. P. H.; Kantacha, A. Tetrahedron Lett. 2003, 44,
8153.
References and Notes
(1) Hulme, A. C.; Arthington, W. Nature 1952, 170, 659.
(2) Hoeksema, H.; Bannister, B.; Birkenmeyer, R. D.; Kagan,
F.; Magerlein, B. J.; MacKellar, F. A.; Schroeder, W.;
Slomp, G.; Herr, R. R. J. Am. Chem. Soc. 1964, 86, 4223.
Synlett 2010, No. 4, 539–542 © Thieme Stuttgart · New York